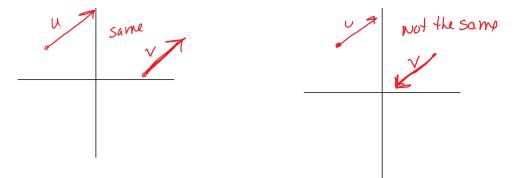


 $\vec{v} = \langle a, b \rangle$ This is called the position vector of (a,b) and is denoted by $\langle a, b \rangle$

Two dimensional vector is an ordered pain denoted in <u>component</u> form as <a, b> * a ? b are the component's of vector V


magnitude: of \vec{v}_1 , denoted $|\vec{v}|_1$, is the length of the arrow if \vec{v}_1 is represented by the arrow from (x_1, y_1) to (x_2, y_2) then $|\vec{v}|_1 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

$$V = \langle a, b \rangle = \left| v \right| = \sqrt{a^2 + b^2}$$

** the direction of v is the direction in which the arrow is pointing.

Zero vector = <0,0> has zero length & no direction.

Importants any two arrows (vectors) with the same
length & pointing in the same direction
represent the same vector
$$|v|=|v|$$

same
 v / v /

Head - minus - Tail (HMT) Rule
if an arrow has an initial point
$$(x_1, y_1)$$
 and
terminal point (X_2, y_2) , it represents
unctor $\langle x_2 - x_1, y_2 - y_1 \rangle$
Frample
 $R = (-4, 2)$ $S(-1, 6)$ $P(z, -1)$ $O(5, 3)$
a. RS
 $\langle 0, 4 \rangle$
 $\langle 0,$

--- I at rorter

Notes Page 2

Examples
Let
$$u = \langle -1, 3 \rangle$$
 $v = \langle -4, 7 \rangle$
a. $u + v$
b. $3u$
 $u = \langle -4, 7 \rangle$
 $u = \langle -4, 7 \rangle$

Unit Vectors'.
A vector
$$u$$
 with length $|u|=|$ is a unit vector.
 $V \neq$ Zero vector, then the vector
 $u = \frac{V}{|v|} = \frac{1}{|v|}$, v unit vector

-

 $\langle 3, 10 \rangle$

example: Find the unit vector in the direction of

$$V = \langle -3, 2 \rangle$$
 and verify it has a length of 1.
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{13}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{13}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)}$
 $|V| = \sqrt{(-3)(2^2 + 2^2)} = \sqrt{(-3)(2^2 + 2^2)$

the direction angle 110 and magninum $\langle 6 \cos 115^{\circ}, 6 \sin 115^{\circ} \rangle$ $\langle -2.54, 5.44 \rangle$ 1150