11. $\sum_{n=0}^{\infty}\left(\frac{x}{4}\right)^{n}$ Geometric $\left|\frac{x}{4}\right|<1$ converges

$$
\text { so }-1<\frac{x}{4}<1 \quad \text { converges abs }(-4,4)
$$

13. $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n}$
$\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{n+1} \cdot \frac{n}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{x \cdot n}{n+1}=\lim _{n \rightarrow \infty} x=x-1<x<1$

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

so... converges on $(-1,1]$
converges abs. on $(-1,1)$
cone. cold. a) $x=1$
15. $\sum_{n=0}^{\infty} \frac{x^{5 n}}{n!} \quad \lim _{n \rightarrow \infty}\left(\frac{x^{5 n+5}}{(n+1)!} \cdot \frac{n!}{x^{5 n}}\right)=\lim _{n \rightarrow \infty} \frac{x^{5}}{n+1}=0 \quad R=\infty$
\therefore converges $(-\infty, \infty)$
converges abs. $(-\infty, \infty)$
17. $\sum_{n=0}^{\infty}(2 n)!\left(\frac{x}{3}\right)^{n} \quad \lim _{n \rightarrow \infty} \frac{(2 n+2)!\left(\frac{x}{3}\right)^{n+1}}{(2 n)!\left(\frac{x}{3}\right)^{n}}=\lim _{n \rightarrow \infty}(2 n+2)(2 n+1)\left(\frac{x}{3}\right)=\infty$
: the series only converges a $x=0$
$\min \sum^{\infty} \lim \left|(-1)^{n} x^{2 n+1} \cdot x^{2 n+3} \frac{2 n+1}{\ldots+1}\right|=\lim \left|\frac{(-1)^{1} x^{3} \cdot(2 n+1)}{1 n}\right|$
26. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \cdot x^{2 n+3}}{2 n+3} \cdot \frac{2 n+1}{(-1)^{n} \cdot x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{1} x^{3} \cdot(2 n+1)}{(2 n+3) \cdot x}\right|$

$$
=\lim _{n \rightarrow \infty} \frac{x^{3} \cdot(2 n+1)}{(2 n+3) \cdot x}=\lim _{n \rightarrow \infty} x^{2}=x^{2} \quad-1<\left|x^{2}\right|<1
$$

check $x=-1 \sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{2 n+1}}{2 n+1} \quad \lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$
alternating

$$
\frac{1}{2 n+1} \geqslant \frac{1}{2 n+3}
$$

$$
\frac{1}{2 n+1} \geq 0
$$

$$
\begin{aligned}
& (-1)^{3 n+1} \\
& (-1)^{n} \cdot 1
\end{aligned}
$$

$$
(-1)^{n} \cdot(-1)^{2 n+1}
$$

check $x=t 1 \sum_{\frac{(-1)^{n}}{2 n+1}} \quad$ alt. series converges

Converges on $[-1,1]$
converges abs $(-1,1)$ conk. cont $x=-1,1$
$55 b$ one possibility $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n}}$
56. a) $i i i$
b) i
C) $i i$
a) iv

* remember this is a sum of terms.

73. False
$\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n 2^{n}}$ converges for $x=2$, but diverges for $x=-2$.
