The Law of Sines can be used to solve triangles when you know

The Law of Cosines can be used to solve triangles when you know \qquad SAB, SSS (Either rule can be used for \qquad , but remember that there could be 0,1 , or 2 triangles well deal with that later.)

The Law of Cosines is called the "generalized Pythagorean Theorem."
The Law of Cosines states:
In any $\triangle A B C$ with angles A, B, and C opposite sides a, b, and c, respectively, the following equations are true:

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Examples: Find the missing side.

1. $\triangle A B C, b=4, c=5, m \angle A=55^{\circ}$

SOS

$$
\frac{a^{2}=5^{2}+4^{2}}{a=4.2}-2(5)(4) \cos 55^{\circ}
$$

$$
\begin{aligned}
& k^{2}=6^{2}+8^{2}-2(6)(8) \cos 172^{\circ} \\
& k \approx 14.0
\end{aligned}
$$

Try it! Find the missing side.
SA 3 S. $\Delta K S D, m \angle S=127^{\circ}, k=16, d=3$

$$
\begin{aligned}
& s^{2}=3^{2}+16^{2}-2(3)(16) \cos 127^{\circ} \\
& s \approx 18.0
\end{aligned}
$$

Find the angles of the triangle. To find $\angle 2$:
4. $\quad \triangle X Y Z, x=3, y=7, z=9 \quad 9^{2}=3^{2}+7^{2}-2(3)(7) \cos Z \quad 3^{2}=7^{2}+9^{2}-2(7)(9) \cos X$

SSS

$$
\begin{aligned}
23 & =-42 \cos z \\
-\frac{23}{42} & =\cos z \\
\angle Z & =\cos ^{-1}\left(-\frac{23}{42}\right) \approx 123.2^{\circ}
\end{aligned}
$$

$$
-121=-126 \cos x
$$

$$
\frac{121}{126}=\cos x
$$

$\angle x=\cos ^{-1}\left(\frac{121}{126}\right)=16.2^{\circ}$
Subtract from 180° to find $\angle y$:

$$
\angle y=180-\angle z-\angle x \approx 40.6^{\circ}
$$

Try it! Find the angles of the triangle.
5. $\triangle A U G, a=5, u=8, g=10$ To Find $\angle G$:

$$
\begin{aligned}
10^{2} & =8^{2}+5^{2}-2(8)(5) \cos G \\
-\frac{11}{80} & =\cos G \\
\angle G & =97.9^{\circ}
\end{aligned}
$$

To Find $\angle u$:

$$
\begin{aligned}
8^{2} & =5^{2}+10^{2}-2(5)(10) \cos u \\
\frac{-61}{-100} & =\cos u \\
<u & =52.4^{\circ}
\end{aligned}
$$

To Find $\angle A$:

$$
\begin{aligned}
& \angle A=180^{\circ}-\angle G-\angle U \\
& \angle A=29.7^{\circ}
\end{aligned}
$$

Assign p. 494
\# $1,3,6,9,35,38$

Area of a Triangle - 2 Formulas
Area of a Triangle $=\frac{1}{2} b h$
Find the area of this triangle:

(any side can bebase)
Area of a Triangle

$$
A_{\Delta}=\frac{1}{2} b c \sin A=\frac{1}{2} a c \sin B=\frac{1}{2} a b \sin C
$$

This formula is for when you know 2 sides and induced angle SAS

If you know 3 sides of the \triangle (SSS) instead, you can use this formula from Geometry:
Heron's Formula
Semi-perimeter

$$
S=\frac{a+b+c}{2}
$$

$$
A_{\Delta}=\sqrt{s(s-a)(s-b)(s-c)}
$$

This formula is for when you know \qquad sss

Examples: Find the area of the given triangle to the nearest $10^{\text {th }}$.
6.

GAS
7. $\Delta C A T, c=4, a=6, t=7$

$$
s=\frac{6+4+7}{2}=8.5
$$

sss

$$
A_{\Delta}=\sqrt{8.5(8.5-6)(8.5-4)(8.5-1)}
$$

$$
=12.0 \mathrm{u}^{2}
$$

Try it! Find the area of the given triangle to the nearest $10^{\text {th }}$.
8. $\triangle A B C, c=6, b=12, m \angle A=32^{\circ}$

SAB
9. $\triangle H P T, h=5, p=7, t=11$

$$
s=\frac{7+5+11}{2}=11.5
$$

$$
\begin{aligned}
A_{\Delta} & =\sqrt{11.5(11.5-7)(11.5-5)(11.5-11)} \\
& \approx 13.0 \mathrm{u}^{2}
\end{aligned}
$$

Assign p. 494

