20.

$$
\begin{aligned}
& \frac{d v}{d t}=2.5 f_{t}^{3} / \mathrm{min} \\
& V=\frac{1}{2} b h \cdot(15)^{\frac{L}{2}} \\
& V=\frac{1}{2}\left(\frac{4}{3} h\right) \cdot h(15) \quad h=2 f t \quad \frac{d h}{d t} \\
& V=\frac{15}{2} \cdot \frac{4}{3} h^{2}
\end{aligned} \quad \begin{aligned}
& 2.5=\frac{60}{3}(2) \frac{d h}{d t} \\
& \frac{d h}{d t}=.0625 \mathrm{ft} 1 \mathrm{ml}
\end{aligned}
$$

$$
\frac{d V}{d t}=15 \cdot \frac{4}{3} h \frac{d h}{d t}
$$

* The water level increases at the rate. $0625 \mathrm{ft} / \mathrm{min}$.

$l=$ length of rope
$x=$ horizontal distance from the boat to the dock.
a. $\quad \frac{d l}{d t}=-2 \mathrm{ft} l \mathrm{sec} \quad l=10 \mathrm{ft} \quad x=8$
$\theta=$ angle between the rope and vertical line
* The boat is approaching the dock at the nate of $2.5 \mathrm{ft} / \mathrm{sec}$
b. $\frac{d \theta}{d t}=$?

$$
\begin{aligned}
& \frac{d x}{d t}=? \\
& x^{2}+6^{2}=l^{2} \\
& 2 \times \frac{d x}{d t}=2 l \frac{d l}{d t} \quad \times \frac{d x}{d t}=l \frac{d l}{d t} \\
& 8 \frac{d x}{d t}=10(-2) \\
& \frac{d x}{d t}=\frac{-20}{8}=\frac{-5}{2} \mathrm{ft} / \mathrm{sec} \\
& =-2.5 \mathrm{H} / \mathrm{sec}
\end{aligned}
$$

$$
\theta=\cos ^{-1}(6 / 10) \cdot \underbrace{0.927}
$$ store this

value!!

$$
\begin{aligned}
& \frac{c}{d t}=\frac{(-\cos . . .2}{(-10 \sin (.927))}=-15 \mathrm{ral} / \sec \\
& \left.\frac{d \theta}{d t}=\frac{-3}{20}=-.15 \mathrm{rad} \right\rvert\, \sec A
\end{aligned}
$$

22. $\left\{\begin{aligned} y=\text { balloon's height } \\ x=\text { bike's distance }\end{aligned}\right.$
$x=$ bike's distance from balloon's starting point
$\delta=$ distance between balloon \& br ike.

3 secs before $x=0 \quad y=65$

$$
\begin{array}{ll}
y=65+1(3)=68 & 68^{2}+51^{2}=5^{2} \\
x=0+17(3)=51 & s=85
\end{array}
$$

$$
\begin{gathered}
\frac{d y}{d t}=1 \mathrm{ft} 1 \mathrm{sec} \quad y=65 \text { feet } \\
\frac{d x}{d t}=17 \mathrm{ft} 1 \mathrm{sec} \quad \frac{d s}{d t}=? \\
x^{2}+y^{2}=s^{2} \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 s \frac{d s}{d t} \\
x \frac{d x}{d t}+y \frac{d s}{d t}=s \frac{d s}{d t} \\
51(17)+68(1)=85 \frac{d s}{d t} \\
\frac{935}{85}=\frac{d s}{d t} \\
\frac{d s}{d t}=11 \mathrm{ft} 12 e \mathrm{C}
\end{gathered}
$$

* The distance between the balloon and the bike is increasing at the rate of $11 \mathrm{ft} / \mathrm{sec}$.

25.

$$
\begin{array}{ll}
\tan \theta=\frac{x^{2}}{x} & \tan \theta=x
\end{array} \sec ^{2} \theta \frac{d \theta}{d t}=\frac{d x}{d t}, ~(\sec 1.249)^{2} \frac{d \theta}{c t}=10
$$

$$
\begin{aligned}
& \text { must store l! } \\
& \text { this value!. }
\end{aligned}
$$

* The angle of inclination is increasing at the rate of $|\operatorname{rad}| \mathrm{sec}$.

29.

$x=$ man's distance from streetlight
$s=$ length of shadow
simliar triangles $\frac{5+x}{16}=\frac{s}{6}$

$$
\begin{gathered}
=\frac{s}{6} \quad 6(s+x)=16 s \\
6 s+6 x=16 s \\
\frac{6 x}{10}=\frac{10 s}{10} \\
S=\frac{3}{5} x \\
\frac{d s}{d t}=\frac{3}{s} \frac{d x}{d t} \\
\frac{d s}{d t}=\frac{3}{s}(-5)=-3 f+\sec \#
\end{gathered}
$$

* The shadow length is changing at the rate of -zfolsec

