

TL(X) tangent to f(x) D X=a

to estimate f (a+a1) we find L (a+0.1)

If f is differentiable a X=a, then Def: the equation of the tangest line y - f(a) = f'(a) (x-a) $\sum_{L(x)}^{V} = f'(a)(x-a) + f(a)$ defines the Inequization of fall x=a.

This can be used to approximate value to X=a on the curve. close * linear approximation

Ex: Find the linearization of $f(x) = \sqrt{x}$ & x = 4and then approx. [4.0] who a calc.

$$\int f'(x) = \frac{1}{2} x^{-1/2}$$

2.
$$m = \int'(4) = \frac{1}{2}(4)^{-\frac{1}{2}} = \frac{1}{4}$$

4.
$$L(x) = \frac{1}{4}(x-4) + 2$$

5. approx.
$$L(4.01) = 0.25(4.01-4)+2$$

= 0.25(.01)+2
= 2.0025

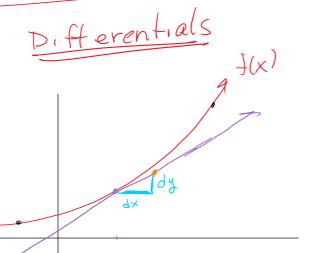
V4.01 & 2.0025

I when is the linear approx. an underlover estimate?

$$\mathcal{L}_{x}$$
: $f(x) = x^3 + 2x + 3$

a.
$$f'(x) = 3x^2 + 2$$
 $f'(2) = 14$ $f(2) = 15$

$$L(x) = 14(x-2) + 15$$


b.
$$L(2.01) = 14(.01) + 15 = 15.14$$

C.
$$f''(x) = (ex f''(2.01) > 0 f'' \neq N P$$

Notes Page 2

 $L(2.01)\approx 15.14$ is an under estimate f(2.01) ble f is ceu (0,00) ble f''>0 over the interval.

d. Error | f(2.01) - L(2.01) Less than 10-3

dy => change in y dx => change in x

Derivative -> dy tells you slope

Differentials -> dx ? dy, which are separate components of dy/dx and they tell us about change.

$$y = 4x^2 + 5$$

Suppose $x = 3$? $dx = 0.01$, find dy
1. $dy = 8x$ (Derivative)

2. Differential $dy = 8x \cdot dx$ dy = 8(3)(.01) = 24(.01) = .24

when x increases by . 01 -> y changes by approx-0,24

D X=3