36.

$$
x^{2}+y^{2}=9 \quad x=\sqrt{9-y^{2}}
$$

$x=$ radius of the cone
$h=3+y$

$$
\begin{aligned}
& =\frac{1}{3} \pi\left(\sqrt{9-y^{2}}\right)^{2}(3+y) \\
V & =\frac{1}{3} r \pi\left(9-y^{2}\right)(3+y)=\frac{1}{3} \pi\left(27+9 y-3 y^{2}-y^{3}\right) \\
V^{\prime} & =\frac{1}{3} \pi \frac{d}{d y}\left(27+9 y-3 y^{2}-y^{3}\right) \\
& =\frac{1}{3} \pi\left(9-6 y-3 y^{2}\right) \\
0 & \left.=9-6 y-3 y^{2}\right) \quad 0
\end{aligned}
$$

$v(1)=\frac{32 \pi}{3}$ maximum volume
The cone has a maximum volume of $\frac{32 \pi}{3}$ when $y=1$ because v^{\prime} goes from + to $-\infty y=1$.
40. $\quad i=2 \cos t+2 \sin t$

$$
\begin{aligned}
& L^{\prime \prime}=-2 \sin t+2 \cos t \\
& 0=-2(\sin t-\cos t)
\end{aligned}
$$

$0=\sin t-\cos t$ or $\cos t=\sin t \quad t=\frac{\pi}{4}+\pi k$ when k is an in tegen
largest magnitude $i=\left|2 \cos \frac{\pi}{4}+2 \sin \pi / 4\right|$

$$
=2 \cdot \frac{1}{\sqrt{2}}+2 \cdot \frac{1}{\sqrt{2}}=\frac{4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4 \sqrt{2}}{2} \text { or } \underline{\text { amps }}^{\text {A }}
$$

$$
=2 \cdot \frac{1}{\sqrt{2}}+2 \cdot \frac{1}{\sqrt{2}}=\frac{4}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{4 \sqrt{2}}{2} \text { or } 2 \sqrt{2} \mathrm{amps}
$$

41.

$D(x)=$ The square of the distance

$$
\begin{aligned}
D(x) & =(x-3 / 2)^{2}+(\sqrt{x}-0)^{2} \\
& =x^{2}-3 x+\frac{9}{4}+x \\
& =x^{2}-2 x+9 / 4
\end{aligned}
$$

because $D(x)$ represents the square
of the distances $D^{\prime}(x)=2 x-2$

$$
0=2 x-2
$$

$$
x=1
$$

-minimum distance

$$
\begin{aligned}
\sqrt{D C D} & =\sqrt{1^{2}-2(1)+9 / 4} \\
& =\sqrt{1-2+9 / 4} \\
& =\sqrt{-1+9 / 4}=\sqrt{5 / 4}=\frac{\sqrt{5}}{2}
\end{aligned}
$$

height of trapezoid $=\cos \theta$
base of trapezoid $=1+2 \sin \theta$
area of trap $=\frac{1}{2} h\left(b_{1}+b_{2}\right)=\frac{1}{2} \cos \theta(1+1+2 \sin \theta)$
Volume of trough $=$ Area of base X length

$$
\begin{aligned}
V & =\frac{1}{2} \cos \theta(1+1+2 \sin \theta)(20) \\
V & =\frac{1}{2} \cos \theta(2+2 \sin \theta)(20) \\
& =20 \cos \theta(1+1 \sin \theta) \\
V^{\prime} & =20 \frac{d}{d \theta} \underbrace{\cos \theta}_{n} \underbrace{(1+\sin \theta)}=20\left[\begin{array}{c}
\cos \theta \\
\left.u v_{v^{\prime}}^{\cos \theta}\right)
\end{array}\right)+(1+\sin \theta)\left(\begin{array}{l}
-\sin \theta) \\
u^{\prime}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& V^{\prime}=20\left(\cos ^{2} \theta-\sin \theta-\sin ^{2} \theta\right)=20\left(1-\sin ^{2} \theta-\sin \theta-\sin ^{2} \theta\right) \\
& \text { * } \cos ^{2} \theta=1-\sin ^{2} \theta \text { hint } \\
& =20\left(-2 \sin ^{2} \theta-\sin \theta+1\right) \\
& O=-20\left(2 \sin ^{2} \theta+\sin \theta-1\right) \\
& 0=-20(2 \sin \theta-1)(\sin \theta+1) \\
& 2 \sin \theta-1=0 \\
& \sin \theta+1=0 \\
& \sin \theta=1 / 2 \\
& \sin \theta=-1 \\
& \theta=\frac{\pi}{6} \\
& V^{\prime} \frac{--+\frac{1++}{P} \pi / 6 N}{\pi / 2} \\
& \theta=\frac{\text { III }}{2}=90^{\circ} \text { since } \\
& \text { 100k a } \\
& \text { diagram } \\
& \text { of } \triangle
\end{aligned}
$$

When $\theta=r \pi / 4$ the trough will have a maximum volume since V^{\prime} goes from + to $D \theta=\pi / 6$.

