21.

(

$$
\begin{aligned}
A & =2 x(4 \cos (.5 x)) \\
& =8 x \cos (.5 x) \\
A^{\prime} & =8 x(-\sin (.5 x)(.5))+8 \cos (.5 x)) \\
O & =-4 x \sin (.5 x)+8 \cos (.5 x)
\end{aligned}
$$

find zero using graphing call.

Store your zero!!!.
max. area is 8.978
The max area is 8.978 when $x=1.721$ bic A^{\prime} goes from t to a) $x \geqslant 1.721$.
30.

$$
\begin{aligned}
& V^{\prime}=216 x-12 x^{2} \\
& O=12 x(18-x) \\
& C . V \text { are } x \neq 0 \quad x=18 \\
& \text { out of } \\
& \text { domain }
\end{aligned}
$$

$x=$ the length in inches of each edge of the square end
$y=$ the leigh of the box
$4 x+y \leq 108$ inches since wewant to maximize the volume $4 x+y=108$ or $y=108-4 x$

$$
\begin{aligned}
V=x^{2} \cdot y \text { or } V & =x^{2} \cdot(108-4 x) \\
V & =108 x^{2}-4 x^{3}
\end{aligned}
$$

$$
\begin{gathered}
y=108-4(18) \\
=36
\end{gathered}
$$ when $x=18$ inches bl v^{\prime} goes $\quad 18 \mathrm{in} \times 18 \mathrm{in} \times 36 \mathrm{in}$

\max
max volume $=11,664 \mathrm{in}^{3}$
when $x=18$ inches blc V^{1} goes
from + to $-a x=18$ inches
max u olume $=11,664 \mathrm{in}^{3}$
when $x=18$ inches $b l c v^{1}$ goes
from + to $a x=18$ inches

3la. $2 x+2 y=36 \mathrm{~cm}$
circumference $=x$

$$
2 y=36-2 x
$$

$$
\begin{aligned}
& 2 \pi r=x \\
& r=\frac{x}{2 \pi}
\end{aligned}
$$

$y=18-x$ (height of cylinder)
b. radius $=x$ height y and $y=18-x$

$$
\begin{aligned}
& V=\pi x^{2}(18-x)=\pi\left(18 x^{2}-x^{3}\right) \\
& V^{\prime}=\pi\left(36 x-3 x^{2}\right) \\
& 0=36 x-3 x^{2} \quad 3 x\left(12-x^{2}\right) \quad U^{\prime} \quad \begin{array}{lll}
12 \mathrm{~N} & 18 \\
y=12 \mathrm{~cm} \\
y=6 \mathrm{~cm}
\end{array}
\end{aligned}
$$

This is the same as porta.
35. $f(x)=x^{3}+a x^{2}+b x$
a. $\quad f^{\prime}(x)=3 x^{2}+2 a x+b$ we need $f^{\prime}(-1)=0 \quad f^{\prime}(3)=0$

$$
\left.\begin{array}{lll}
f^{\prime}(x)=3 x+2 a x+b & f^{\prime}(3)=0 & 0
\end{array}{ }^{f^{\prime}(-1)=0} \begin{array}{lll}
0 & =3(3)^{2}+2 a(3)+b \\
& 0 & =3-2 a(-1)+b
\end{array} \quad 0=27+6 a+b\right)
$$

$0=3-2 a+b$

$$
\begin{gathered}
0=3-2 a+1 \\
-(0=27+6 a+b) \\
\hline
\end{gathered}
$$

* subtract equations 1 ''s a system

$$
\begin{aligned}
& V=\pi r^{2} h \quad V=\pi\left(\frac{x}{2 \pi}\right)^{2}(18-x) \\
& V=\pi\left(\frac{x^{2}}{4 \pi^{2}}\right)(18-x)=\frac{x^{2}(18-x)}{4 \pi}=\frac{1}{4 \pi}\left(18 x^{2}-x^{3}\right) \\
& V^{\prime}=\frac{1}{4 \pi} \cdot \frac{d}{d x}\left(18 x^{2}-x^{3}\right)=\frac{1}{4 \pi}\left(36 x-3 x^{2}\right) \\
& 0=36 x-3 x^{2} \\
& 0=3 x(12-x) \\
& =x=0 \quad x=12 \\
& \text { max volume occurs when } \\
& \begin{aligned}
y & =18-12 \\
& =6 \mathrm{~cm}
\end{aligned} \text { and } y=6=12 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }(0=27+6 a+b) \text {.4. iris a system } \\
& 0=-24-8 a \\
& 24=-8 a \\
& a=-3 \\
& 3-2(-3)+b=0 \\
& 3+6+b=0 \\
& a+b=0 \\
& b=-9 \\
& f(x)=x^{3}+a x^{2}+b x \quad f(x)=x^{3}-3 x^{2}-9 x
\end{aligned}
$$

we need to verify the local max and local min

$$
f(x)=x^{3}-3 x^{2}-9 x
$$

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}-6 x-9 \\
0=3\left(x^{2}-2 x-3\right) \\
=3(x-3)(x+1) \\
\quad x=3 \quad x=-1
\end{array}
$$

There is a local max on $f(x)$ when $x=-1$ bloc $f^{\prime}(x)$ goes from + to - $D x=-1$.
There is a local min on $f(x)$ when $x=3$ bic $f^{\prime}(x)$ goes from - to $+2 x=3$
b. local min at $x=4$ point of inflection at $x=1$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+2 a x+b \\
f^{\prime}(4)=0 \\
3(4)^{2}+2 a(4)+b=0 \\
48+8 a+b=0 \\
5 \\
48+8(-3)+b=0 \\
48-24+b=0 \\
b=-24
\end{gathered}
$$

$$
f(x)=x^{3}-3 x^{2}-24 x
$$

we need to verify!!

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x-24 \\
& f^{\prime \prime}(x)=6 x-6
\end{aligned}
$$

Second Derivative
Test, for local
check $x=4$

$$
\text { r } 11 / \text { (1) - } 1.1,1 n-1 n
$$

check p.o.i a $x=1$

$$
0=6 x-6
$$

Second Derivative
Test for local extrema
check $x=4$
$f^{\prime \prime}(4)=6(4)-\varphi$ positive
\therefore local min
check p.o.c a $x=1$

$$
\begin{aligned}
& O=6 x-6 \\
& 6=6 x \\
& 1=x \\
& f^{\prime \prime}: P
\end{aligned}
$$

\therefore there is a p.o.t a $x=1$

