14. $S=-16 t^{2}+96 t+112$
a. $V=-32 t+96 \quad t=0 \quad$ velocity $96 \mathrm{ft} / \mathrm{sec}$
b. $0=-32 t+96 \quad t=3$ c.v.

$$
\begin{aligned}
& S=-16(3)^{2}+96(3)+112 \\
& S(3)=256 \text { feet }
\end{aligned}
$$

\# The max. height is 256 ft and occurs $\mathfrak{A} t=3$ because s^{\prime} or velocity goes from t to $-a \quad t=3$.
C.

$$
\begin{aligned}
& 0=-16 t^{2}+96 t+112 \quad t=7 \\
& =-16(t+1)(t-7) \\
& \quad v(7)=-32(7)+96=-128 \mathrm{ft} / \mathrm{sec} .
\end{aligned}
$$

17. $V=1000 \mathrm{~cm}^{3}$

$$
\pi r^{2} h=1000
$$

$$
h=\frac{1000}{\pi r^{2}}
$$

$$
\begin{array}{rlrl}
A & =8 r^{2}+2 \pi r h & \frac{d A}{d r}=16 r-\frac{2000}{r^{2}} \\
& =8 r^{2}+2 \pi r\left(\frac{1000}{\pi r^{2}}\right) & 0=16 r-\frac{2000}{r^{2}} \\
& =8 r^{2}+\frac{2000}{r} & \frac{2000}{r^{2}}=16 r \quad r^{3}=\frac{2000}{16} \\
r=5 & h=\frac{1000}{\pi(5)^{2}} & r^{3}=125 \quad r=5 \mathrm{~cm} \\
h & =\frac{40}{4 \pi} & 0 \min
\end{array}
$$

Ratio is 5 to $\frac{40}{\pi}$ or 1 to $\frac{8}{\pi}$
20.

use the right triangle:

$$
\begin{aligned}
& 4+w^{2}=r^{2} \\
& r=\sqrt{4+w^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 1-\frac{2}{1} \cdot \frac{\sqrt{4+w^{2}}}{2}+\frac{6-w}{5} \\
& T=\frac{1}{4}\left(4+w^{2}\right)^{-1 / 2} \cdot 2 \omega+\frac{1}{5} \\
& =\frac{w}{2 \sqrt{4+w^{2}}}+1 / 5 \\
& +\frac{1}{5}=\frac{w}{2 \sqrt{4+w^{2}}}\left(+2 \sqrt{4+w^{2}}\right)^{\prime}=(5 w)^{2} \\
& 4\left(4+w^{2}\right)=25 w^{2} \quad w^{2}=\frac{16}{21} \\
& 16+4 w^{2}=25 w^{2} \quad \omega=\sqrt{16 / 21}=\frac{4}{\sqrt{21}} F \\
& 16=21 w^{2} \quad 1873
\end{aligned}
$$

Jane should land her boat - 873 miles down the shoreline to reach the village in the least amount of time.
$\{x=$ radius of the cylinder
Volume of the cylinder $=$

$$
\pi r^{2} h
$$

22.

$\{r=$ radius of the sphere

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& y^{2}=r^{2}-x^{2} \\
& y^{2}=10^{2}-x^{2} \\
& y=\sqrt{100-x^{2}} \\
& \frac{1}{2} h=\sqrt{100-x^{2}} \\
& h=2 \sqrt{100-x^{2}}
\end{aligned}
$$

The colinum \bar{q} sphere * Share the same center
$r=10$ (given)
$y=\frac{1}{2}$ of the height of the cylinder

$$
\therefore y=1 / 2 h
$$

use cal
To find
zero $x=8.165$

max volume $\sigma 2418.399 \mathrm{~cm}^{3}$
the maximum volume of the cylinder 1 s $2418.399 \mathrm{~cm}^{3}$ when
x (radius) is 8.165 cm be carse v^{\prime} goes from + to $-a x=8.165 \mathrm{~cm}$.

