
$A=2 x\left(12-x^{2}\right)$

$$
=24 x-2 x^{3}
$$

$$
\begin{aligned}
& A^{\prime}=24-6 x^{2} \\
& 0=24-6 x^{2} \\
& 24=6 x^{2} \\
& 4=x^{2} \\
& x= \pm \sqrt{4}= \pm 2 \quad \text { Domain } \\
& \max
\end{aligned}
$$

Dimensions 4×8

\max area 32
7.

$$
\begin{aligned}
& V=x(8-2 x)(15-2 x) \\
& V=4 x^{3}-46 x^{2}+120 x \\
& V^{\prime}=12 x^{2}-92 x+120=4(3 x-5)(x-6)
\end{aligned}
$$

Domain (0,4)
Dimensions $\frac{5}{3} \times \frac{14}{3} \times \frac{35}{3} \mathrm{in}$

\max volume $\frac{2450}{27} \approx 90.74 \mathrm{in}^{3}$
11.
minimize the
Surface Area
$\frac{11}{x}$
$V=500 \mathrm{ft}^{3}$

$$
\begin{aligned}
S A & =x^{2}+4 \cdot x h \\
S A & =x^{2}+4 x\left(\frac{500}{x^{2}}\right) \\
& =x^{2}+\frac{2000}{x}
\end{aligned}
$$

$$
V=x^{2} h
$$

$$
500=x^{2} h
$$

$$
h=\frac{500}{x^{2}}
$$

$$
12000 X^{-1}
$$

$$
S A^{\prime}=2 x+\left(-2000 x^{-2}\right)
$$

$$
0=2 x-\frac{2000}{x^{2}} \quad \Rightarrow \frac{2000}{x^{2}}=2 x
$$

$$
\begin{aligned}
& 2000=2 x^{3} \\
& 1000=x^{3} \\
& x=10
\end{aligned}
$$

$$
x=10
$$

$$
h=\frac{500}{10^{2}}=5 \mathrm{ft}
$$

dimensions $10 \times 10 \times 5 \mathrm{ft}$

$$
\begin{aligned}
& A=\frac{1}{2} a b \sin \theta \\
& A^{\prime}=\frac{1}{2} a b \cos \theta \\
& 0=\frac{1}{2} a b \cos \theta
\end{aligned}
$$

- $[0, \pi]$

Critical value $\frac{\pi}{2}=\theta$

$\theta=\frac{\pi}{2}$ or 90°

