

The graph, to the right, is the derivative of a function f on the interval $[-4,4]$.
a. On what intervals is f increasing?
f is increasing $(-4,1)$ bbc
$f^{\prime}>0$ on the interval $(-4,-2) \cup(-2,1)$.
b. On what intervals is the graph of f concave up?
when f^{\prime} is increasing
f is cen $(-2,0) \cup(3,4)$ bl

f^{\prime} is increasing on the interval.
c. At which x-coordinates does f have local extrema?

- $f(x)$ has a local max a $x=1$ be fl goes from $+z o-\infty x=1$.
- $f(x)$ has a local min of $x=-4$ bic © $x=-4$ there is an end pt and $f^{\prime}>0$ to the right of $x=-4$,
- $f(x)$ has a local $\min a x=4, b / c$ of $x=4$ there 1 s an end pt
d. What are the x-coordinates of all inflection points of the graph f ? and $f^{\prime} \angle 0$ to the lett f has a p.o.i d $x=-2, x=0, x=3$ of $x=4$.
bloc f^{\prime} goes from either increasing to decrecesing or deceasing to incensing a) $x=-2, x=0, x=3$
e. Sketch a possible graph of f on the interval $[-4,4]$.

THEOREM 5 Second Derivative Test for Local Extrema

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at $x=c$.
2. If $f^{\prime}(c)=0$ and $\forall^{\prime \prime}(c)>0$, then f has a local minimum at $x=c$.

Using the second derivative test, find all local extreme values:
a. $f(x)=x^{3}-12 x-5$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}-12 \\
3 x^{2}-12=0
\end{gathered}
$$

$$
\begin{array}{llr}
3 x^{2}=12 & f^{\prime \prime}(x)=6 x & x=2 \text { local } \\
x^{2}=4 & f^{\prime \prime}(2)=12 & x=-2 \text { local } \\
x= \pm 2 & f^{\prime \prime}(-2)=-12 & \text { ma }
\end{array}
$$

Your turn.....
Given $f(x)=x^{3}+\frac{3}{2} x^{2}-6 x+1$
a. Find all extrema on $\mathrm{f}(\mathrm{x})$ using the SECOND Derivative test. Justify your answer.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}+3 x-6 \\
& =3\left(x^{2}+x-2\right)
\end{aligned} \quad \rightarrow 0=3(x+2)(x-1) \quad \begin{array}{lll}
\\
x=-2 x=1 & f^{\prime \prime}=6 x+3 & \begin{array}{l}
x=-2 \\
\text { local }
\end{array} \\
\text { max }
\end{array}
$$

b. Determine the concavity of the graph of $f(x)$. Justify your answer.

$$
f^{\prime \prime}(x)=6 x+3 \quad 6 x+3=0 \quad f^{\prime \prime}
$$

$f(x)$ is $\operatorname{ccu}(-1 / 2,0) \quad b \mid c f^{\prime \prime}>0$ on the interval.

$f(x)$ is $c c d(-\infty,-1 / 2)$ bIc $f^{\prime \prime}<0$ on the interval
c. Determine all points of inflection on the graph of $f(x)$. Justify your answer.

$$
(-.5,4.25)
$$

$f(x)$ has a poi $(-.5,4.25)$ bic f "eheenjes sighs
d. Sketch a possible graph of $f(x)$.

