Name \qquad
Notes 5.3 Day 2

RECALL:
THEOREM 5 Second Derivative Test for Local Extrema

1. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at $x=c$.
2. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at $x=c$.

Using the second derivative test, find all local extreme values. Justify your answer.

$$
\begin{aligned}
& f(x)=x^{3}-12 x-5 \\
& f^{\prime}=3 x^{2}-12 \\
& 0=3 x^{2}-12
\end{aligned}
$$

(2) $f^{\prime \prime}(2)=6(2)>0$ local min
(1) $x= \pm 2$ $f^{\prime \prime}(-2)=6(-2)<0$ local max
$f(x)$ has a localmin 0$) x=2$, bl $f^{\prime}(2)=0$ \& $f^{\prime \prime}(2)>0$.
$f(x)$ has a local max $D x=-2$, bl $f^{\prime}(-2)=0 \leqslant f^{\prime \prime}(-2)<0$.
Find all the points of inflection on the graph $f(x)$ and the intervals of concavity on the graph of $f(x)$. Justify.

$$
\begin{aligned}
& f(x)=e^{-x^{2}} \\
& f^{\prime}(x)=e^{-x^{2}} \cdot(-2 x)=-2 x e^{-x^{2}} \quad x= \pm \sqrt{1 / 2} \\
& f^{\prime \prime}(x)=-2 x\left(e^{-x^{2}} \cdot(-2 x)\right)+e^{-x^{2}}(-2) \\
& =4 x^{2} e^{-x^{2}}-2 e^{-x^{2}} \\
& \frac{P}{f(x)} \frac{N}{c c u}-\frac{P}{\sqrt{1 / 2}^{c c d}} \frac{r^{1 / 2}}{\sqrt{c u n}} f^{\prime \prime} \\
& 0=2 e^{-x^{2}}\left(2 x^{2}-1\right) \quad x f(x) \text { nah p.o.is a } x= \pm \sqrt{1 / 2} \\
& \text { ale } f^{\prime \prime} \text { changes signs o } x= \pm \sqrt{1 / 2} \text {. } \\
& \text { * } f(x) \text { is ccu }(-\infty,-\sqrt{1 / 2}) \cup(\sqrt{1 / 2}, \infty) \\
& \text { ale } f^{\prime \prime}>0 \text { over the intervals. } \\
& f(x) \text { is } \operatorname{cod}(-\sqrt{1 / 2}, \sqrt{12}), b k f^{\prime \prime}<0 \text { oven } \\
& \text { + te internal. }
\end{aligned}
$$

The graph, to the right, is the derivative of a function f on the interval $[-4,4]$.
a. On what intervals is f increasing?

$$
(-4,1) \quad(-4,-2) \cup(-2,1)
$$

b. On what intervals is the graph of f concave up?

$$
f \text { is ccu }(-2,0) \cup(3,4)
$$

bile f^{\prime} is increasing over the interval.

$x=-4 \quad 10 \mathrm{cal} \min$
$x=1$ local max
$x=4 \quad$ local \min
d. What are the x-coordinates of all inflection points of the graph f ?

$$
x=-2,0,3
$$

e. Sketch a possible graph of f on the interval $[-4,4]$.

Your turn.....
Given $f(x)=x^{3}+\frac{3}{2} x^{2}-6 x+1$
a. Find all extrema on $\mathrm{f}(\mathrm{x})$ using the SECOND Derivative test. Justify your answer.
b. Determine the concavity of the graph of $f(x)$. Justify your answer.

$$
\begin{aligned}
& \text { b. Determine the concavity of the graph of }(x) \text { Justify your answer }) \\
& f^{\prime \prime}=6 x+3, ~ f(x) c c d \text { from }(-0,1 / 2)
\end{aligned}
$$ bic $f^{\prime \prime} \angle 0$ over the interval

- $f(x)$ has a local max
©) $x=-2$ b lc $f^{\prime}(-2)=0$ \& $f^{\prime \prime}(-2)<0$.
$f(x)$ has a local min
a) $x=1 \quad b\left(c f^{\prime}(1)=0\right.$

$$
0=6 x+3
$$

c. Determine all points of inflection on the graph of $f(x)$. Justify your answer.
so the interval.
$f(x)$ has a p.oi of $(-0.5,4.25)$ bile $f^{\prime \prime}(-1 / 2)=0$? $f^{\prime \prime}$ changes sighs a) $x=-1 / 2$.
d. Sketch a possible graph of $f(x)$.

$$
\begin{aligned}
& =3(x+2)(x-1) \quad f^{\prime \prime}(1) \geqslant 0
\end{aligned}
$$

