$$
\begin{aligned}
& \text { 13. } y=x e^{x} \\
& y^{\prime}=x e^{x}+e^{x} \\
& y^{\prime \prime}=x e^{x}+e^{x}+e^{x} \\
& 0=x e^{x}+2 e^{x} \\
& 0=e^{x}(x+2) \\
& x=-2 c v
\end{aligned}
$$

$$
y=-2 e^{-2}=\frac{-2}{e^{2}}
$$

The is a point of inflection on y of $\left(-2, \frac{-2}{e^{2}}\right)$ because $y^{\prime \prime}$ changes signs a $x=-2$.

$$
\begin{aligned}
& \text { 15. } y=\tan ^{-1} x \\
& y^{\prime}=\frac{1}{x^{2}+1}=\left(x^{2}+1\right)^{-1} \\
& y^{\prime \prime} \stackrel{\text { Concave up, Concave down }}{p \mathrm{O}_{\mathrm{o}} \mathrm{~N}} \\
& y=\tan ^{-1}(0)=0 \\
& y^{\prime \prime}=-\left(x^{2}+1\right)^{-2} \cdot 2 x=\frac{-2 x}{\left(x^{2}+1\right)^{2}} \quad \text { point of inflection }(0,0) \\
& 0=\frac{-2 x}{\left(x^{2}+1\right)^{2}} \quad x=0 \\
& \text { 17. } y=x^{1 / 3}(x-4)=x^{4 / 3}-4 x^{1 / 3} \\
& y^{\prime}=\frac{4}{3} x^{1 / 3}-4 / 3 x^{-2 / 3} \quad \text { or } \quad y^{\prime}=\frac{4 x-4}{3 x^{2 / 3}} \\
& y^{\prime \prime} \frac{\text { concave up }, \text { concave down }^{\text {concaryp }}}{P-2 N 0 P} \\
& y^{\prime \prime}=\frac{4}{9} x^{-2 / 3}+\frac{2}{9} x^{-5 / 3} \\
& =\frac{4}{9 x^{2 / 3}} x^{3 / 3 / 3} x^{3 / 3+} \frac{8}{9 x^{5 / 3}}=\frac{4 x+8}{9 x^{5 / 3}} \\
& \frac{4 x+8}{9 x^{5 / 3}}=0 \quad 4 x+8=0 \\
& x=-2 \mathrm{cv} \\
& y^{\prime \prime} \text { is end } x=0 \quad \mathrm{CV} \\
& \begin{aligned}
y & =(-2)^{1 / 3}(-2-4) \\
& =-\sqrt[3]{-2}
\end{aligned} \\
& =-6 \sqrt[3]{-2}=6 \sqrt[3]{2} \\
& y=0^{1 / 3}(0-4)=0
\end{aligned}
$$

points of inflection

$$
(-2,4 \sqrt[3]{2}) \text { and }(0,0)
$$

Ins flvi=n の $x= \pm 1250$
$24 n\lceil-2.2\rceil$
$22 a f^{\prime}(x)=0$ Q $x= \pm 1.25,0$
positive $(-1.25,0) \cup(1.25, \infty)$
negative $(-\infty,-1.25) \cup(0,1.25)$
b. $f^{\prime \prime}(x)=0$ a) $x= \pm 0.7$
pos. $(-\infty,-0.7) \cup(0.7, \infty)$
neg. $(-0.7,0.7)$
$24 a \quad[-2,2]$
b. $(-\infty,-2] \cup[2, \infty)$
c. Local min. $D x=-2$

Local max $\partial x=2$
26. $x(t)=6-2 t-t^{2}$

$$
a_{p} x^{\prime}(t)=v(t)=-2-2 t
$$

$$
b \cdot x^{\prime \prime}(t)=v^{\prime}(t)=a(t)=-2
$$

C. the particle begins a 6 and mores in the negative direction for all values of t in the domain.

30 a. $v(t)=0$ D $t=-0,2, t=4$ \& $t=12$
b. $a(t)=0$ a) $t=1.5^{\prime}, t=5.2, t=8, t=11$, and $t=13$

3a. $y^{\prime}=(x-1)^{2}(x-2)$
a. $0=(x-1)^{2}(x-2)$

$$
x=1 \quad x=2
$$

a. No local max b. local $\dot{\text { a }}$ absolute min $\underset{\infty}{ } x=2$

Co

$$
\begin{aligned}
& y^{\prime \prime}=(x-1)^{2}(1)+(x-2)(2(x-1)(1)) \\
& 0=(x-1)^{2}+2(x-1)(x-2) \quad f^{\prime \prime} \\
& 0=(x-1)((x-1)+2(x-2)) \\
& 0=(x-1)(3 x-5) \\
& x=1 \quad x=5 / 3
\end{aligned}
$$

The points of inflection occur a) $x=1 \leqslant x=5 / 3$

