Tuesday, November 13, 2012

13.
$$y = xe^{x}$$
 $y' = xe^{x} + e^{x}$
 $y'' = xe^{x} + e^{x}$
 $y = -3e^{-2} = -\frac{2}{e^{2}}$
 $0 = e^{x}(x+2)$
The is a point of inflection on y of $(-2, \frac{-2}{e^{2}})$
 $0 = e^{x}(x+2)$
 $0 = e^{x}(x+2)$
 $0 = e^{x}(x+2)$
 $0 = e^{x}(x+2)$
 $0 = e^{x}(x+1)^{-1}$
 $0 = (x^{2}+1)^{-1}$
 $0 = -3x$
 $0 = -$

points of inflection $(-2, 4\sqrt{2})$ and (0,0)

22a f'(v) = 0 $\Rightarrow x = \pm 1.25 A$

24a [-2.27

22a
$$f'(x)=0$$
 0 $x=\pm 1.25, 0$
positive (-1.25,0) \cup (1.25, ∞)
regative (-1.25) \cup (0, 1.25)

24a
$$\begin{bmatrix} -2,2 \end{bmatrix}$$

b. $\begin{bmatrix} -\infty,-2 \end{bmatrix} \cup \begin{bmatrix} 2,\infty \end{bmatrix}$
C. Local min. $D \times = -2$
Local max $D \times = 2$

b.
$$f^{4}(x) = 0$$
 $\partial x = \pm 0.7$
pos. $(-\infty, -0.7) \cup (0.7, \infty)$
neg. $(-0.7, 0.7)$

26.
$$x(t) = 6 - 2t - t^2$$

 $a_p x'(t) = v(t) = -2 - 2t$

b.x''(t) = v'(t) = a(t) = -2C. the particle begins D le and mores in the negative dévection for all values of t in the domain.

30 a.
$$v(t)=0$$
 D $t=-0.2$ $t=4$ i , $t=12$
b. $a(t)=0$ D $t=1.5$, $t=5.2$, $t=8$, $t=11$, and $t=13$

Co
$$y'' = (x-1)^2(1) + (x-2)(2(x-1)(1))$$

 $0 = (x-1)^2 + 2(x-1)(x-2)$ f'' ccv ccd ccv
 $0 = (x-1)((x-1)+2(x-2))$ $P = 1$ $N = 5/3$ P
 $0 = (x-1)(3x-5)$
 $x = 1$ $x = 5/3$

The points of inflection occur a x=1 { x=5/3

