$$
\begin{aligned}
& \text { 11. } f(x)=\frac{1}{x}+\ln x \quad[0.5,4] \\
& f^{\prime}(x)=-x^{-2}+\frac{1}{x} \\
& 0=-\frac{1}{x^{2}}+\frac{1}{x} \\
& 0=\frac{-1+x}{x^{2}}
\end{aligned}
$$

$$
-1+x=0 \quad x=1 \quad \text { critical point }
$$

we most check critical point s endpoints

$$
\begin{aligned}
& f(1)=\frac{1}{1}+\ln 1=1+0=1 \quad \text { Minimum value }(1,1) \\
& f(0.5)=\frac{1}{0.5}+\ln (65)=1.307 \quad \text { Local max }(.5,2+\ln .5) \\
& f(4)=\frac{1}{4}+\ln 4=1.636 \quad \text { maximum }\left(4, \frac{1}{4}+\ln 4\right)
\end{aligned}
$$

18. $f(x)=x^{3 / 5} \quad(-2,3] \quad$ EVT Doesn't apply I

$$
f^{\prime}(x)=3 / 5 x^{-2 / 5}
$$

$f^{\prime}(x)$ is undefined at $x=0$ therefore it is a critical value.
when $x<0 \quad f(x)<0$ when $x>0 f(x)>0$ therefore \& $x=0$ is neither a max or min.
we need to check the only end point $x=3 \quad f(3)=3^{3 / 5}$ will be the highest point therefore maximum $\left(3,3^{3 / 5}\right)$
20. $y=x^{3}-2 x+4$

$$
y^{\prime}=3 x^{2}-2, \quad 0=3 x^{2}-2 \quad x= \pm \sqrt{2 / 3}+\frac{\sqrt{2} / 3}{}-\sqrt{2 / 3}+
$$

$$
y^{\prime}=3 x-2 \quad 0=3 x^{2}-2 \quad x= \pm V^{2} / 3 \quad \max \quad \min
$$

Local max! $\left(-\sqrt{2 / 3}, 4+\frac{4 \sqrt{6}}{9}\right) \quad$ Local $\min \left(\sqrt{2 / 3}, \frac{4-4 \sqrt{6}}{9}\right)$
y has a local max a $x=-\sqrt{2 / 3} \mathrm{blc}$

$$
\begin{aligned}
& \text { 22. } y=x^{3}-3 x^{2}+3 x-2 \\
& y^{\prime}=3 x^{2}-6 x+3 \\
& 0=3 x^{2}-6 x+3 \\
& x=\frac{6 \pm \sqrt{36-4(3)(3)}}{2(3)} \\
& x=1
\end{aligned}
$$

sign chant
y^{\prime} goes from $t \rightarrow$-.
y has a local min
a) $x=\sqrt{2} / 3$ ble y^{\prime} goes from neg to pos a) $x=\sqrt{2 / 3}$

+her efore no max or \min

$$
0=\frac{x}{\sqrt{x^{2}-1}} \quad x \neq 1 \text { or }-1
$$

$$
\begin{array}{ll}
x=-1 & \sqrt{(-1)^{2}-1}=0 \\
x=1 & \sqrt{1^{2}-1}=0
\end{array}
$$

** y has a local min of 0 a $x=-1$ * y has a local min ot a $x=1$ bic $y^{\prime}>0$ to the right of 1
25. $y=\frac{1}{\sqrt{1-x^{2}}}$ Domain $(-1,1)$

$$
y^{\prime}=-1 / 2\left(1-x^{2}\right)^{-3 / 2} \cdot-2 x
$$

$0=\frac{x}{\left(1-x^{2}\right)^{3 / 2}} \quad x=0$ critical value

$y_{\text {has }}$ a minimum valve of 12
$x=0$ since y^{\prime}, goes from Neg.
to pos. at $x=0$
29. $y=\frac{x}{x^{2}+1}$

$$
y^{\prime}=\frac{\left(x^{2}+1\right)(1)-(x)(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}
$$

$y=\frac{-1}{(-1)^{2}+1}=-1 / 2 \quad y=\frac{1}{1^{2}+1}=1 / 2$
\# has a local minot $-1 / 2$ a
$x=-1$ bile y^{\prime} goestrom neg. to pos. a $x=-1$

* y has a local min of $1 / 2$
a) $x=1 \mathrm{~b} / \mathrm{c} y^{\prime}$ goes from
positive to negative a
$x=1$.

45. False. The maximum could occur at a corner where f^{\prime} (c) DNE
46. False consider the graph below

47. E

$$
\begin{gathered}
f(x)=4 x-x^{2}+6 \\
f^{\prime}(x)=4-2 x \\
0=4-2 x \\
2=x
\end{gathered}
$$

critical salve

$$
\begin{aligned}
f(2) & =4(2)-2^{2}+6 \\
& =8-4+6 \\
& =10
\end{aligned}
$$

