\qquad
Conceptual Derivative Practice

1. The graph of f ', the derivative of f, is shown below. Its domain is $[-4,4]$.

a. Suppose that $f(3)=1$. Find an equation of the line tangent to f at the point $(3,1)$.

$$
y-1=2(x-3)
$$

b. Where does f have a local minimum? Justify your answer. f has a lo cal min @ $x=1$ since f^{\prime} Champed form - ts t at $x=1$
c. Estimate f " (2).

$$
f^{\prime \prime}(2) \approx 1
$$ f has an inf. pt. at $x=-3, x=-1 / 2, x=3$ since 8 charged form inc. to dec. on dee to inc at there pointer.

e. Where does f achieve it maximum on the interval $[1,4]$?

$$
A f x=4
$$

*2. If $f^{\prime}(x)=\sin (\ln x)$, how many relative extrema does f have in the interval (0.5, 2]?

$$
2
$$

* means calculator acceptable if you choose to use it

3. The graphs of the derivatives of two functions f and g are given below.

a. How many solutions can the equation $f(x)=0$ have? Explain.

$$
\text { possibly } O \text { or } 1 \text { tin she } f^{\prime}>0 \text {. }
$$

b. How many solutions can the equation $g(x)=0$ have? Explain.

$$
\text { At moot } 2 \text { times since } g \text { went from }, t \text { at } x=0 \text {, }
$$

c. If $g(x)=0$ has two solutions, what can you say about where these two solutions lie? Justify your answer. One mut be when $x<0$ and $x>0$ since $g^{\prime}<0$ when $x<0$ and

$$
y^{\prime}>0 \text { when } x>0
$$

4. Graphs of f, f^{\prime} and $f^{\prime \prime}$ appear below. Which is which? How can you tell?

$$
\begin{aligned}
& f \rightarrow A \\
& f^{\prime} \rightarrow C \\
& f^{\prime \prime} \rightarrow B
\end{aligned}
$$

*5. Two particles start at the origin and move along the x-axis. For $0 \leq t \leq 10$, their respective position functions are given by $x_{1}=\sin (t)$ and $x_{2}=e^{-2 t}-1$. For how many values of t do the particles have the same velocity?
a. none
b. one
c. two

e. four
6. Use the graph below to answer the following questions.
a. Suppose $f(1)=5$. Find an equation of the line tangent to the graph of f at $(1,5)$.

$$
y-5=2(x-1)
$$

b. Suppose $f(-1)=-2$. Could $f(3)=-6$?

Explain your answer.

$$
\begin{aligned}
& \text { plain your answer. } \\
& N \text {, since } f^{\prime}>0 \text { for }[-1,3] \text {, then } \\
& f \text { is inc. }
\end{aligned}
$$

c. If $f(0)=1$ order $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$ from least to greatest.

$$
f^{\prime \prime}(0)<f(0)<f^{\prime}(0)
$$

7. The graph of f ',continuous and differentiable on the closed interval [-3,5], is shown below. The graph has horizontal tangents at $x=-1$ and $x=3$. Use the graph to answer the following questions.
a. What are the critical values of f ?

$$
x=1, x \approx 4.5
$$

b. Estimate the x-coordinat es) of any local minima of f.

$$
x \approx 4.5
$$

c. On what interval is f both increasing and concave down?

$$
\begin{aligned}
& f^{\prime}>0 \text { and } f^{\prime} \text { dec. } \\
& (-1,1)
\end{aligned}
$$

d. Let another function g be defined by $g(x)=x^{2}-3 x-1$. If $h(x)=f(g(x))$, find $h^{\prime}(4)$.

$$
L^{\prime}(y)=-10
$$

8. The functions f and g are defined on the interval $[-4,4]$ by the graphs below.

a. Estimate the rate of change of the function $f(g(x))$ at $x=1$.

b. Is $f(g(x))$ increasing or decreasing at $x=3$?

c. At what x-values does the graph of $y=f(g(x))$ have horizontal tangents?

$$
x=-3, x=0, x=2, x=-1, x=3.5
$$

Conceptual Derivative Practice Answers

1a) $y=2 x-5 \quad$ 1b) $x=1 ; f^{\prime}$ changes from - to + at $1 \quad$ 1c) Any $0.5<m<1.5$
1d) About $x=-3, x=-0.5$, and $x=3$
These are places where f ' has
1e) $\quad x=4$ since f^{\prime} is nonnegative on [1, 4] so f increases on the interval local extrema, so f " goes from positive to 0 to negative or vice versa
2) 2 relative extrema

3a) If the domain is limited to what we see, 0 or 1 solutions. F is continually rising and may or may not cross the x-axis

3b) g^{\prime} indicates g is falling, then rising like a quadratic. g can have 0,1 or 2 zeros.
3c) It appears they would be symmetric about the y-axis based on the symmetry of g.
4) $\quad \mathrm{A}$ is f, C is f^{\prime} and B is $f^{\prime \prime}$
5) D

6a) $y=2 x+3 \quad$ 6b) No, f^{\prime} is nonnegative on $[-1,3]$ so f is rising, not falling from -2 to -6
6c) $\quad f^{\prime \prime}(0), f(0), f^{\prime}(0)$

7a) $x=1, x=4.5$
7b) $x=-3, x=4.5$
7c) $(-1,1)$
7d) -10
8a) $\frac{1}{4}$ to 1 (est)
8b) Decreasing
8c) $x=\{-4,-2.9,-1,0,2,3.5\}$

