AP Calculus Conceptual Derivative Practice

- Name_
- 1. The graph of f ', the derivative of f, is shown below. Its domain is [-4, 4].

a. Suppose that f(3) = 1. Find an equation of the line tangent to f at the point (3, 1).

- b. Where does f have a local minimum? Justify your answer. f has a local min @ X-l since f' changed for - to + at x-l
- c. Estimate f "(2). $f''(z) \propto 1$

d. Where does f have an inflection point? Justify your answer. f has an inf. pt. at X=-3, X= 1/2, X=3 since f' changed firm inc. to dec. or dea to inclust there points.

e. Where does f achieve it maximum on the interval [1, 4]? A = 4.

*2. If $f'(x) = \sin(\ln x)$, how many relative extrema does f have in the interval (0.5, 2]?

Mode

* means calculator acceptable if you choose to use it

3. The graphs of the <u>derivatives</u> of two functions f and g are given below.

a. How many solutions can the equation f(x) = 0 have? Explain. Possibly \mathcal{O} or \mathcal{I} for f' > 0.

- b. How many solutions can the equation g(x) = 0 have? Explain. At most 2 times since g' what from - to that A=0,
- c. If g(x) = 0 has two solutions, what can you say about where these two solutions lie? Justify your answer. One most be when X < 0 and X > 0 since g' < 0 when X < 0 and $\chi > 0$ since g' < 0 when X < 0 and $\chi > 0$ since g' < 0 when X > 0.
- 4. Graphs of f, f and f appear below. Which is which? How can you tell?

*5. Two particles start at the origin and move along the *x*-axis. For $0 \le t \le 10$, their respective position functions are given by $x_1 = \sin(t)$ and $x_2 = e^{-2t} - 1$. For how many values of *t* do the particles have the same velocity?

- 6. Use the graph below to answer the following questions.
- a. Suppose f(1) = 5. Find an equation of the line tangent to the graph of f at (1, 5).

- b. Suppose f(-1) = -2. Could f(3) = -6? Explain your answer. M_{2} , since f'>0 for [-1, 3], then f is inc.
- c. If f(0) = 1 order f(0), f'(0) and f''(0) from least to greatest.

$$f_{n}(s) < f(s) < f_{n}(s)$$

- 7. The graph of *f* ', continuous and differentiable on the closed interval [-3, 5], is shown below. The graph has horizontal tangents at x = -1 and x = 3. Use the graph to answer the following questions.
- a. What are the critical values of f?

- b. Estimate the *x*-coordinate(s) of any local minima of *f*. $\chi \approx 4.5$
- c. On what interval is f both increasing and concave down? f' > 0 and f' dec.

$$(-1, 1)$$

d. Let another function g be defined by $g(x) = x^2 - 3x - 1$. If h(x) = f(g(x)), find h'(4).

8. The functions f and g are defined on the interval [-4, 4] by the graphs below.

a. Estimate the rate of change of the function f(g(x)) at x = 1.

2

b. Is f(g(x)) increasing or decreasing at x = 3?

c. At what *x*-values does the graph of y = f(g(x)) have horizontal tangents?

$$X = -3$$
, $X = 0$, $X = 2$, $\lambda = -1$, $X = 3.5$

Conceptual Derivative Practice Answers

1a)	y = 2x - 5	1b) $x = 1;$	f ' changes from –	- to + at 1	1c) Any $0.5 < m < 1.5$
1d)	About $x = -3$, $x = -0.5$ These are places when local extrema, so f " g positive to 0 to negati	f, and $x = 3$ re f ' has goes from ve or vice vers	1e sa	x = 4 so f in	since f is nonnegative on [1, 4] acreases on the interval
2)	2 relative extrema				
3a)	If the domain is limited to what we see, 0 or 1 solutions. F is continually rising and may or may not cross the x -axis				
3b)	g' indicates g is falling, then rising like a quadratic. g can have 0, 1 or 2 zeros.				
3c)	It appears they would be symmetric about the y-axis based on the symmetry of g' .				
4)	A is f , C is f ' and B is f ''				
5)	D				·
6a)	y = 2x + 3 6b) No, f' is nonnegative on [-1, 3] so f is rising, not falling from -2 to -6				
6c)	f "(0), f(0), f '(0)				
7a)	x = 1, $x = 4.5$	7b)	x = -3, $x = 4.5$		
7c)	(-1,1)	7d)	-10		
8a)	$\frac{1}{4}$ to 1 (est)	8b)	Decreasing	8c)	$x = \{-4, -2.9, -1, 0, 2, 3.5\}$