AP Calculus AB Cumulative Review – not comprehensive

Name:

Recall The Fundamental Theorem of Calculus:

If p is an antiderivative of f, then
$$\int_{a}^{b} f(t)dt = p(b) - p(a)$$
.
1. Let $g(x) = \int_{-7}^{8x^{2}+4} f(t)dt$. Find $g'(x)$.
 $g(x) = F(8x^{2}+4) - F(-7)$
 $g'(x) = F'(8x^{2}+4) - I(bx - 0)$
 $= I(bx + f(8x^{2} + 4))$

2. Let
$$g(x) = \int_{\ln x}^{\cos 3x} f(t) dt$$
. Find $g'(x)$.
 $g(x) = F(\cos 3x) - F(\ln x)$
 $g'(x) = F'(\cos 3x) - \sin 3x \cdot 3 - F'(\ln x) + \frac{1}{x}$
 $= -3\sin 3x f(\cos 3x) - \frac{1}{x} f(\ln x)$

3. The function $g(x) = \frac{x^2}{e^x}$ has the derivative $g'(x) = \frac{x(2-x)}{e^x}$. Find the exact value of $\int_1^4 \frac{x(2-x)}{e^x} dx$. $g(4) - g(1) = \frac{4}{e^4} - \frac{1}{e^4} = \frac{16}{e^4} - \frac{1}{e}$

4. If *f* is the function defined by $f(x) = \sqrt{\cos\left(\frac{1}{5}x\right)}$ and *g* is an antiderivative of *f* such that g(2) = 5, then use a calculator to approximate g(6).

$$\int_{2}^{6} \sqrt{\cos(\frac{1}{5}x)} dx = 3.2685 = g(b) - g(2)$$

$$g(b) = 8.2685$$

5. If *f* is the function defined by $f(x) = \frac{1}{5x^2 + 3}$ and *g* is an antiderivative of *f* such that g(3) = 11, then use a calculator to approximate g(1).

$$\int_{1}^{3} \frac{1}{5x^{2}+3} dx = 0.1049 = g(3) - g(1)$$

$$g(1) = 10.8951$$

6. Let f and h be twice differentiable functions.

X	0	1	2	3	4	5	6	7	8	9
f(x)	0	3	4	-2	8	1	0	4	1	7
f'(x)	-2	-3	-4	-5	-6	2	-2	3	23	-2
h(x)	1	2	1	4	10	5	-4	2	3	4
h'(x)	5	4	3	2	1	6	-6	1	4	8

a. Evaluate $\int_{1}^{3} h'(x)dx$. h(3) - h(1) = 4 - 2 = 2b. Let a(x) = f(2x). i. What is a'(x)? $a'(x) = f'(2x) \cdot 2$ ii. Evaluate $\int_{1}^{3} a'(x)dx$. a(3) - a(1) = f(4) - f(2) = 0 - 4 = -4iii. Evaluate $\int_{1}^{3} f'(2x)dx$ $\frac{1}{2} - 4 = -2$

c. Let
$$b(x) = f(h(x))$$
.
i What is $b'(x)$?

i. What is
$$b(x)$$
:
 $b'(x) = f'(h(x)) \cdot h'(x)$
ii. Evaluate $\int_{1}^{3} b'(x) dx$.
 $b(3) - b(1) = f(h(3)) - f(h(1)) = f(4) - f(2) = 8 - 4 = 4$

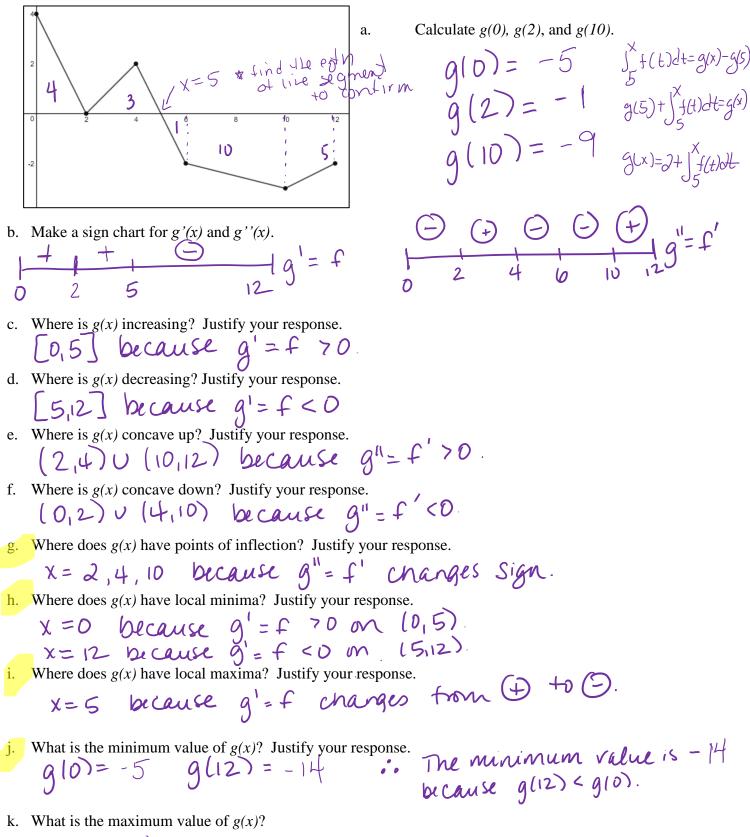
iii. Evaluate
$$\int_{2}^{5} f'(h(x)) \cdot h'(x) dx$$

 $b(5) - b(2) = f(h(5)) - f(h(2)) = f(5) - f(1) = 1 - 3 = -2$

d. Let
$$m(x) = \int_{-3}^{e^{2x}} f(t)dt$$

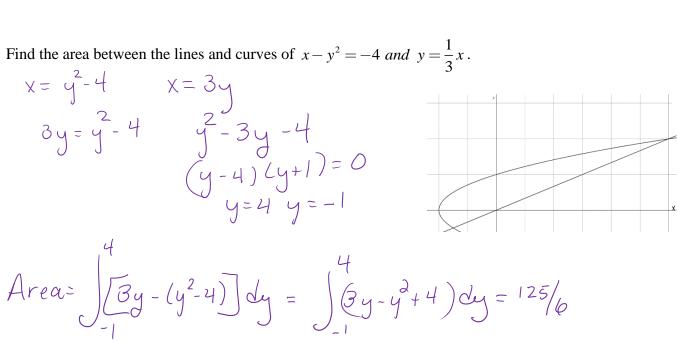
i. What is $m'(x)$?
 $m'(x) = f(e^{2x}) \cdot 2e^{2x}$
ii. Find $m'(0)$.
 $m'(0) = f(1) \cdot 2$
 $= 3 \cdot 2$
 $= 6$

7. The graph below is f(x). Let g(x) be an antiderivative of f over the interval of 0,12 and g = 2.



g(5)=0

8. Find the area between the lines and curves of $x - y^2 = -4$ and $y = \frac{1}{3}x$.



9. Show an integral set up (do not solve) the gives the area enclosed in the first quadrant from 0,2 between $y = 2\sqrt{x}$, $y = x - 2^2 + 1$, and $y = \frac{1}{2}x$.

$$A = \int_{0}^{1} (2\pi - \frac{1}{2x}) dx + \int_{1}^{2} \left[((x - 2i^{2} + 1)) - \frac{1}{2x} \right] dx$$

10. (Calc ok) Find the area between the curves $f = x = 3\sqrt[3]{x}$ and $g = x = x^3$. You must show your integral set up. az - 1,510 bz1,510

Area =
$$\int_{a}^{0} (x^{3} - 3\sqrt[3]{x}) dx + \int_{0}^{b} (3\sqrt[3]{x} - x^{3}) dx$$

or
 $2 \int_{a}^{0} (x^{3} - 3\sqrt[3]{x}) dx \approx 5.196$