\qquad
For \#1-3, graph the equation. Make sure to include 2 periods of the graph and all critical points.

1. $y=4 \cos \frac{1}{3}\left(x-\frac{\pi}{6}\right)-3$

$$
\begin{array}{lll}
A=4 & B=\frac{1}{3} & \text { Per }=6 \pi \\
C=-3 & D=\frac{\pi}{6} & \text { Shift Right } \frac{\pi}{6}
\end{array} \quad \text { Crit pts every } \frac{6 \pi}{4}, \frac{3 \pi}{2}
$$

2. $y=-2 \sin 4(x+\pi)+1$
$A=2$, vert refl.
$B=4 \quad$ Per: $\frac{2 \pi}{4}=\frac{\pi}{2}$
Crit ptsevery

$D=\pi$ shift left π $\frac{\pi}{2} \cdot \frac{1}{4}=\frac{\pi}{8}$

$$
A \cos [B(x-D)]+C
$$

3. $y=3 \cos \left(2 x-\frac{\pi}{2}\right)=2 \cos 2\left(x-\frac{\pi}{4}\right) \quad \begin{aligned} & A=3 \\ & B=2 \\ & D=\frac{\pi}{4} \text { Right }\end{aligned}$ Per $=\frac{2 \pi}{2}=\pi \quad \begin{gathered}\text { Crit pts } \\ \text { every } \frac{\pi}{4}\end{gathered}$

For \#4-5, write the equation that best represents the graph. (Reminder: there will be many correct equations.)
4.

Equation: \qquad

Equation: \qquad
6. Charlotte is on a swing at the playground. When she sits on the swing, she is 2 feet from the ground. Her mom pulls her back to give her a swing, and her height off the ground goes to 4.5 feet off the ground. Assume that she swings forward to a height off the ground of 4.5 feet, and that Her mom pushes her so that she keeps the same motion. It takes Charlotte 6 seconds to complete one "swing," from back to front to back again.
A) Draw a graph of Charlotte's height from the ground (in feet) versus the time (in seconds). Draw 4 periods (5 critical points for just the first period).

C) What is Charlotte's height off the ground at 3.4 seconds? At 15.2 seconds? (Round to the $10^{\text {th }}$.) (CALCULATOR)

$$
\begin{aligned}
& 3.4 \operatorname{secs} \Rightarrow 4.4 \mathrm{ft} \\
& 15.2 \mathrm{sec} s \Rightarrow 4.5 \mathrm{ft}
\end{aligned}
$$

D) What is the first time that Charlotte is 3 feet off the ground? What is the third time she is 3 feet off the ground? (Round to the $10^{\text {th }}$ of a second.) (CALCULATOR)

$$
1^{s t}+i m e \approx 1.3 \mathrm{sec} \approx 3^{r d}+1 m e \approx 7.3 \mathrm{sec}
$$

7. A Ferris wheel 120 feet in diameter completes 1 revolution every 180 seconds. The lowest point is 10 feet above ground.

$$
B=\frac{2 \pi}{180}=\frac{\pi}{90}
$$

a) Draw the graph of the situation, starting with a person getting on at the bottom of the wheel at time $t=0$ seconds. Assume the person gets to ride for 4 revolutions.

b) Determine an equation to represent the rider's path.

$$
y=70-60 \cos \left(\frac{\pi x}{90}\right)
$$

c) How high will the rider be after 10 minutes? 10 minutes $\Rightarrow>600 \mathrm{~second}>$

$$
100 \text { feet }
$$

d) When will the rider be 100 feet above ground for the first time?

$$
60 \text { seconds }
$$

