Find the derivative.

1. $y=\ln \left(x^{2}-x\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{x^{2}-x} \cdot(2 x-1) \\
& =\frac{2 x-1}{x^{2}-x}
\end{aligned}
$$

2. $y=\log (3 x)$ base is 10

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{3 x} \cdot \frac{1}{\ln 10} \cdot 3 \\
& =\frac{3}{3 x \ln 10}=\frac{1}{x \ln 10}
\end{aligned}
$$

4. $y=5 e^{2 x}$

$$
\begin{aligned}
\frac{d y}{d x} & =5 e^{2 x} \cdot 2 \\
& =10 e^{2 x}
\end{aligned}
$$

5. $y=8^{x}$

$$
\begin{aligned}
\frac{d y}{d x} & =8^{x} \cdot \ln 8 \cdot 1 \\
& =8^{x} \ln 8
\end{aligned}
$$

3. $y=\log _{4}\left(x^{3}-x \ln 3\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{\left(x^{3}-x \ln 3\right)} \cdot \frac{1}{\ln 4} \cdot\left(3 x^{2}-\ln 3\right) \\
& =\frac{3 x^{2}-\ln 3}{\ln 4\left(x^{3}-x \ln 3\right)}
\end{aligned}
$$

6. $y=x^{1-e} \leftarrow$ this is NOT exp is is NOT
exponential! power

$$
\begin{aligned}
\frac{d y}{d x} & =(1-e) x^{1-e-1} \\
& =(1-e) x^{-e} \\
& =\frac{1-e}{x^{e}}
\end{aligned}
$$

Use logarithmic differentiation to find the derivative.

$$
\begin{array}{rlrl}
\text { 7. } y=x^{\cos x} \\
\ln y=\ln x & \cos x & \frac{d}{d x}\left[\begin{array}{rl}
8 \cdot y & =(\sin x)^{x} \\
{[\ln y} & =x \cdot \ln (\sin x)] \\
\frac{d}{d x}[\ln y & =\cos x \cdot \ln x]_{\text {product Rale }} \\
\frac{1}{y} \frac{d y}{d x} & =1 \cdot \ln (\sin x)+x \cdot \frac{1}{\sin x} \cdot \cos x \\
y \cdot \frac{1}{y} \frac{d y}{d x}=\left[-\sin x \cdot \ln x+\cos x \cdot \frac{1}{x}\right] \cdot y & y \cdot \frac{1}{y} \frac{d y}{d x}
\end{array}=\left[\ln (\sin x)+\frac{x \cos x}{\sin x}\right] \cdot y\right. \\
\frac{d y}{d x} & =x^{y}\left[-\cos x\left[-\sin x \ln x+\frac{\cos x}{x}\right]\right. & & =(\sin x)^{x}[\ln (\sin x)+x \cot x]
\end{array}
$$

9. Find the slope of the line tangent to $y=3 \ln 2 x$ that also goes through the origin.

$$
\begin{aligned}
& \begin{aligned}
& \frac{d y}{d x}= \frac{3 \cdot \frac{1}{2 x} \cdot 2}{}=\frac{6}{2 x}=\frac{3}{x} \quad \text { at } x=a, \quad \frac{d y}{d x}=\frac{3}{a} \\
& \text { Slope: } \frac{3 \ln 2 a-0}{a-0}=\frac{3}{a} \\
& \frac{a 3 \ln 2 a}{3 a}=\frac{3 a}{3 a} \quad a \neq 0 \\
& \ln 2 a=1 \\
& e^{\prime}=2 a \quad a=\frac{e^{\prime}}{2} \quad m=\frac{3}{\frac{e}{2}}=\frac{6}{e}
\end{aligned} .
\end{aligned}
$$

