H, H Day 2 Thursday, September 26, 2019 8:16 AM Exp & Log Derivative 1

Question: Tor T
if
$$y = x^{x}$$
 then $y' = x \cdot x^{x-1}$ FALSE!!!!
power rule $y = x^{n}$ where $n = constant$
 $y' = n \cdot x^{n-1}$
if $y = (x^{x})$ then $y' = x^{x} \cdot \ln x \cdot 1$ FALSE!!
 $y' = a^{x} \cdot \ln x \cdot 1$ FALSE!!
 $y' = a^{x} \cdot \ln x \cdot 1$
how can we find y'
if $y = x^{x}$
 $\ln y = \ln x^{x}$
 $\ln y = x \cdot \ln x$
 $\frac{1}{y} \cdot \frac{1}{y} \cdot \frac{1}{x} + \ln x(1)$
 $\frac{1}{y} \cdot \frac{1}{y} = x \cdot \frac{1}{x} + \ln x(1)$
 $\frac{1}{y} \cdot \frac{1}{y} = x \cdot (1 + \ln x)$
 $y' = x \cdot (1 + \ln x)$
 $y' = x^{x} (1 + \ln x)$
Find $\frac{d_{x}}{d_{x}}$ of $y = (sinx)^{x}$

Find
$$\frac{d_{x}}{dx}$$
 of $y = (sinx)$
 $(ny = x \cdot (n(sinx)))$
 $\frac{1}{y} \frac{d}{y} = x \cdot \frac{1}{sinx}(caxx) + \ln(sinx) \cdot 1$
 $\frac{1}{y} \frac{d}{y} = x \cdot cotx + \ln(sinx)$
 $\frac{1}{y} \frac{d}{y} = x \cdot cotx + \ln(sinx))$
 $\frac{d_{x}}{dy} = (sinx) (x \cdot cotx + \ln(sinx))$
 $\frac{d_{y}}{dx} = (sinx) (x \cdot cotx + \ln(sinx))$
 $\frac{d_{y}}{dx} = (sinx) (x \cdot cotx + \ln(sinx))$
 $\frac{d_{y}}{dx} = (sinx) (x \cdot cotx + \ln(sinx))$
 $\frac{1}{y} \frac{d}{y} = cosx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = cosx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = cosx \cdot \frac{1}{x} + (nx(-sinx))$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{cosx}{x} - sinx \cdot \ln x$
 $\frac{1}{y} \frac{d}{y} = \frac{1}{x} - sinx + \frac{1}{x} + \frac{1}{x}$
 $\frac{1}{x} + \frac{1}{x} + \frac{$

,

b. Find the acceleration
$$\partial t = 2$$
.
 $a(z) = v'(z) = -0.240$