AP Calculus BC 4.3 Notes Day 2
Derivatives of Inverse Functions
Find each of the following derivatives at the given x -values.

1. $f(x)=x^{2} \quad$ at $x=3 \quad(3,9)$

$$
f^{\prime}(x)=\left.2 x\right|_{x=3}=6
$$

2. $f(x)=x^{3} \quad$ at $x=2 \quad(2,8)$

$$
f^{\prime}(x)=\left.3 x^{2}\right|_{x=2}=12
$$

$f^{\prime}(2)=\frac{1}{g^{\prime}(16)}$
3. $f(x)=x^{4} \quad$ at $x=2$

$$
f^{\prime}(x)=\left.4 x^{3}\right|_{x=2}=32
$$

4. $f(x)=x^{5} \quad$ at $x=2$

$$
f^{\prime}(x)=\left.5 x^{4}\right|_{x=2}=80
$$

Name $\qquad$

$$
\begin{align*}
& \text { fr } g(x)=\sqrt{x} \quad \text { at } x=9 \quad(9,3) \Longrightarrow g^{\prime}(9)=\frac{1}{f^{\prime}(3)}  \tag{3}\\
& g^{\prime}(x)=\left.\frac{1}{2} x^{-1 / 2}\right|_{x=9}=\frac{1}{6}
\end{align*}
$$

$$
g(x)=\sqrt[3]{x} \quad \text { at } x=8 \quad(8,2) \quad g^{\prime}(8)=\frac{1}{f^{\prime}(2)}
$$

$$
g^{\prime}(x)=\left.\frac{1}{3} x^{-2 / 3}\right|_{x=8}=1 / 12
$$

$$
\begin{aligned}
& g(x)=\sqrt[4]{x} \quad \text { at } x=16 \\
& g^{\prime}(x)=\left.\frac{1}{4} x^{-3 / 4}\right|_{x=16}=1 / 32
\end{aligned}
$$

$$
g(x)=\sqrt[5]{x} \quad \text { at } x=32
$$

$$
g^{\prime}(x)=\left.\frac{1}{5} x^{-4 / 5}\right|_{x=32}=\frac{1}{80}
$$

5. Below are the graphs of two functions $f(x)=x^{2}$ and its inverse $f^{-1}(x)=\sqrt{x}$. Label the functions, draw in the tangent lines at the given points and find the slopes of those tangent line at those points.


$$
\begin{aligned}
& f(x)=p \cdot 0 \cdot \in(2,4) \\
& m=f^{\prime}(z)=4 \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(2)=4 \\
& y-4=4(x-2)
\end{aligned}
$$

$$
\begin{aligned}
& f^{-1}(x) \Rightarrow p \cdot o \cdot t(4,2) \\
& m=\left(f^{-1}\right)^{\prime}(4)=\frac{1}{2} \\
& \left(f^{-1}\right)^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
& \left(f^{-1}\right)^{\prime}(4)=\frac{1}{4} \\
& y-2=\frac{1}{4}(x-4)
\end{aligned}
$$

6. Below are the graphs of two functions $f(x)=x^{3}$ and its inverse $f^{-1}(x)=\sqrt[3]{x}$. Label the functions, draw in the tangent lines at the given points and find the slopes of those tangent lines at those points.


$$
\begin{array}{ll}
f(x)=>p \cdot 0 \cdot t & (2,8) \\
f^{\prime}(x)=m=12 & f^{-1}(x) \quad p o t \Rightarrow(8,2) \\
y-z=12(x-2) & \left(f^{-1}\right)^{\prime}(x)=m=\frac{1}{12} \\
f-2=\frac{1}{12}(x-8)
\end{array}
$$

How are $f(x)$ and $g(x)$ in each problem(\#1-6) related to each other? How are the derivative values in each problem above related to each other?

1. $f(x) \S g(x)$ inverse function
2. The derivatives/skops of tan recipe vocals

Based on your observations, write a rule relating the derivative of a function and its inverse.

$$
\begin{aligned}
& f(x)=(a, b)=\frac{1}{d x}(a, a) \\
& \left.\left.\frac{d}{d x} f(x) \right\rvert\, x\right) \left.=\frac{1}{d x} f^{-1}(x) \right\rvert\, x=f(a) \\
& \left.\frac{d}{d x} f^{-1}(x) \right\rvert\, x=f(a)
\end{aligned}
$$

Why does this work??? Here's a proof of what we just came up with.

$$
\begin{aligned}
& f(g(x))=x \\
& f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \\
& g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} \\
& g^{\prime}(x)=\frac{1}{f^{\prime}(y)}
\end{aligned}
$$

Example from AP Exam:
Let $f$ be a differentiable function such that $f(3)=15, f(6)=3$, $f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function $g$ is differentiable and $g(x)=f^{-1}(x)$ for all $x$. What is the value of $g^{\prime}(3)$ ?
A) $-\frac{1}{2} \quad g^{\prime}(3)=\frac{1}{f^{\prime}(6)}=-\frac{1}{2}$
B) $-\frac{1}{8}$
C) $\frac{1}{6}$
D) $\frac{1}{3}$
E) The value of $g^{\prime}(3)$ cannot be determined from the information given.

