Precalculus Honors

Study Guide 4.3-4.5 and 4.7

Non-Calculator Review Questions:

1. Evaluate each expression. Leave in exact form:
a) $\cot \left(\frac{5 \pi}{3}\right)$

\square
b) $\operatorname{Sin} 240^{\circ}$

$$
\frac{-\sqrt{3}}{2}
$$

$-\sqrt{3}$ -1

1

Calculator Review Questions:

Solve $\sec x=4.75$ for $0 \leq x \leq 2 \pi$

$$
\cos x=\frac{1}{4.75} \approx 0.2105
$$

$$
x \in\{1.359,4.925\}
$$

3. List 3 angles that are coterminal with $-\frac{2 \pi}{3}$ (do not include $-\frac{2 \pi}{3}$)

$$
\text { any. } 3 \text { of: } \quad \ldots \quad \frac{-14 \pi}{3},-\frac{8 \pi}{3}, *, \frac{4 \pi}{3}, \frac{10 \pi}{3}, \frac{16 \pi}{3}, \ldots
$$

4. Identify the asymptotes of $y=2+\cot \left(\frac{x}{2}\right)$

$$
\begin{aligned}
& y=\cot x \rightarrow \text { asymptotes at } x=k \pi \\
& \text { horiz stretch b.a.f.0. } 2 \rightarrow x=2 k \pi \text { for any integer } k \\
& \text { 5. Let } f(x)=3-2 \sec (4 x) \ldots, x=-4 \pi, x=-2 \pi, x=0, x=2 \pi, \ldots
\end{aligned}
$$

a. Identify the period of $f(x)$

$$
\frac{2 \pi}{4}=\frac{\pi}{2}
$$

b. Identify the domain of $f(x)$

$$
\begin{aligned}
& \operatorname{Cos}(4 x)=0 \quad \text { when } \quad 4 x=\text { odd mull of } \frac{\pi}{2} \rightarrow x_{x \neq \begin{array}{l}
\text { ODD mull } \\
\text { of } \frac{\pi}{8}
\end{array}}^{\text {unify the range of } f(x)} .
\end{aligned}
$$

c. Identify the range of $f(x)$
$3-2=1$
$3+2=5$
$x \neq \frac{-3 \pi}{8,}-\frac{\pi}{8}, \quad \frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}$,

Part I: Sketch a graph of the following without using your calculator. Graph in $=\frac{1}{2} \sin 2\left(x-\frac{\pi}{8}\right)+1$

1 radians and graph 2 periods! Make sure you label scales on BOTH axes. Plot critical values as well.

1) $y=-2 \cos \frac{1}{3}(x+\pi)-3$

$$
\begin{aligned}
& \text { Per }=\frac{2 \pi 1^{3}}{1 / 3}=6 \pi \\
& D=-\pi \\
& \text { Crit pts every } \\
& \frac{16 \pi}{4}=\frac{1+\frac{3 \pi}{2}}{2} \quad \frac{-2 \pi}{2}-1+\frac{1 \pi}{2}+\frac{3 \pi}{2}+\frac{3 \pi}{2}=\frac{3 \pi}{2} \frac{2 \pi}{2}-\frac{7 \pi}{2}
\end{aligned}
$$

2) $y=\frac{1}{2} \frac{1}{20}\left(2 x-\frac{\pi}{4}\right)+1=\frac{1}{2} \sin 2\left(x-\frac{\pi}{8}\right)+1$

$$
A=\frac{1}{2}
$$

$$
C=I(\operatorname{up} 1)
$$

$$
B=2 \text { Per }=\frac{2 \pi}{2}=\pi
$$

Crit pts every $\frac{\pi}{4}=\frac{2 \pi}{8}$

$$
D=\frac{\pi}{8}
$$

3) $y=3 \sin \left(x+\frac{\pi}{3}\right)-4$

Part II: Without using your calculator, solve the equations over the given interval. Express your answers in radians.
4) $\sin x=\frac{1}{2},[0,2 \pi]$

6) $\tan x=1 ; 0 \leq x \leq 2 \pi$

5) $\cos x=-\frac{\sqrt{ } 2}{2} ; \frac{\pi}{2} \leq x \leq \pi$

7) $\csc x=-2,[0,2 \pi]$

8) $\cot x=-\sqrt{3} ; \frac{\pi}{2} \leq x \leq \pi$

Part III: Use a calculator to solve the following equations over the given interval. ${ }^{\wedge}$
9) $\sin x=\frac{3}{4} ; 0 \leq x \leq \frac{\pi}{2}$

10) $\cos x=\frac{2}{3} ; 0 \leq x \leq 2 \pi$
11) $\csc x=-1.5 ; \pi \leq x \leq \frac{3 \pi}{2}$

Part IV: Write a sinusoidal equation to describe the following situations. Then, use your equation to answer the accompanying questions.
12) A Ferris wheel is 80 feet in diameter and its center is 45 feet above the ground. It takes the Ferris wheel 1.5 minutes to complete a revolution. Per $=1.5 \mathrm{~min}=90 \mathrm{sec}$

b) After how many seconds will the rider be at a height of 50 feet? $24.3 \mathrm{sec}, 66 \mathrm{sec}$

c) How high will the rider be after 1 minute into the ride? \qquad 65 f
VALUE $\mathrm{x}=60$
13) The temperature in our classroom varies sinusoidally during the school day. At sam, the room is at a high temperature of 75 degrees (F). Your friend records the temperature at 9:30 to be at a low of 62 degrees. (Note, the day really starts at midnight or 12 am . Be sure to adjust your graph and solutions accordingly!)
2) Function $y=68.5+6.5 \cos \left[\frac{2 \pi}{3}(x-8)\right]$
b) What will the temperature be at $3: 00 \mathrm{pm}$? 65.25 degrees
c) When is the first time the temperature will reach its low value of 62 degrees?
12.30 Am

Part V: Sketch 2 periods of each of the following functions. Plot specific points and be as accurate as possible. (No calculators)
14) $y=-4 \underline{\tan } 2 x-1$ flip Per $=\frac{\pi}{B}$ Per $=\frac{\pi}{2}$
Crit pts every $\frac{\pi}{8}$

15) $y=3 \sec \frac{x}{4}+2 \frac{1}{\cos }$
$B=\frac{1}{4}$
Per $=\frac{2 \pi}{1 / 4}=8 \pi$ Crit pts 2π

Part VI: Find the exact values of each of the following. Remember to keep in mind the domains and ranges for the inverse functions. (No Calculator)
16) $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$
17) $\tan ^{-1}(-1)$

$$
\frac{\pi}{4}
$$

$$
-\pi / 4
$$

18) $\sec [\underbrace{\cos ^{-1}\left(-\frac{\sqrt{2}}{2}\right)}]$

$$
\sec \frac{3 n \pi}{4}=-\frac{\sqrt{2}}{2}
$$

19) $\sin \left[\tan ^{-1}(1)\right]$

$$
\sin (\pi / 4)
$$

Part VII: Use a calculator to find an approximate value (round to two decimal places and answer in radians).
20) $\sin ^{-1} .8$
.93
21) $\cos ^{-1} \frac{2}{5}$

22) $\cot ^{-1} 23$

$$
\tan ^{-1}\left(\frac{1}{23}\right)
$$

Find the domain and range of each:

1. $y=4 \sin (3 x)-2$
$R[-b, 2]$

2. $y=\csc (.5 x+\pi) 4)$
D. $\mathbb{R} \times t-2 \pi+\frac{\pi}{2} K$

D: $(-\infty,-1] \cup[1, \infty)$
5. $y=-\tan (\pi x)-1$
$D: \mathbb{R} x=\frac{1}{2}+1 K$
$R: \mathbb{R}$
7. $f(x)=\frac{1}{4} \tan ^{-1} \pi x-1$
$D: \mathbb{R}$
$R \cdot\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$
2. $y=-2 \cos ^{-1} 3(x-0.5)$
D. $[1 / 6,5 / 6]$
$R \cdot\left[-\frac{\pi}{2}, 0\right]$
4. $y=3 \sec (2 x)+4$
$D: \mathbb{R} \times \neq \frac{\pi}{4}+\frac{r \pi}{2} k$
$R(-\infty,-3] \cup[3, \infty)$
6. $y=2 \cot (2 x)-2$
$D: \mathbb{R} \times \pm \frac{\pi}{2} k$
$R!\mathbb{R}$

7b. Extension: $\lim _{x \rightarrow-\infty} f x=-\frac{\pi}{8}$

