Opener

1. Let θ be an acute angle with $\sin \theta=\frac{5}{6}$. Find the remaining 5 trig functions.

2. Evaluate without using a calculator:
a. $\cos \frac{\pi}{3}=\frac{1}{2}$
b. $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$

$$
\begin{array}{r}
\sec \theta=6 / \sqrt{11} \\
\csc \theta=6 / 5 \\
\frac{2 x / 6^{0} / x}{x \sqrt{3}}
\end{array}
$$

c. $\csc \frac{\pi}{4}=\sqrt{2}$
3. At what measures of θ (in radians) will the following be undefined over the interval [$0,2 \pi$)?
a. $\tan \theta=\frac{\sin \theta}{\cos \theta}$
b. $\cot \theta=\frac{\cos \theta}{\sin \theta}$
c. $\csc \theta=\frac{1}{\sin \theta}$
d. $\sec \theta=\frac{1}{\cos \theta}$
$\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$
$\theta=0$

$$
\theta=0
$$

Notes:
Finding missing values in a triangle.

Use what you know about trig ratios to set up equations and solve for "a" and "b".

$$
\sin 37^{\circ}=\frac{a}{8}
$$

$$
8 \sin 37^{\circ}=a
$$

$$
\begin{aligned}
& \cos 37^{\circ}=\frac{b}{8} \\
& b=8 \cos 37^{\circ}
\end{aligned}
$$

$a \approx 4.815$
$b \approx 6.39$

Find the height of the building.

$$
\begin{aligned}
& \tan 65^{\circ}=\frac{h}{340} \\
& h \approx 729.13 \text { feet }
\end{aligned}
$$

Setting up trig equations based on word problems.
A large, helium-filled penguin is tied to the ground by two large cables. The cables make angles of 48° and 40° with the ground. If the cables are attached to the ground 10 feet from each other, how high above the ground is the penguin?

Angle of elevation:

$$
\begin{gathered}
\tan 40^{\circ}=\frac{h}{10+x} \quad \tan 48^{\circ}=\frac{h}{x} \\
(10+x) \tan 40^{\circ}=h \quad x \tan 48^{\circ}=h \\
(10+x) \tan 40^{\circ}=x \tan 48^{\circ} \\
10 \tan 40^{\circ}+x \tan 40^{\circ}=x \tan 48^{\circ} \\
10 \tan 40^{\circ}=x \tan 48^{\circ}-x \tan 40^{\circ} \\
10 \tan 40^{\circ}=x\left(\tan 48^{\circ}-\tan 40^{\circ}\right) \\
x \approx 30.90 \text { feet }
\end{gathered}
$$

is the angle through which the eye moves up from a HORIZONTAL to look at something above.

Angle of depression:
is the angle through which the eye moves down from a HORIZONTAL to look at something below.

Examples: (angle of elevation/depression and bearing)
a. From the top of a 100 -ft building, a man observes a car moving toward him. If the angle of depression of the car changes from 15° to 33° during the period of observation, how far does the car travel?

Dry=

b. A recreational hiker names Otis determines the angle of elevation from where he is standing on a level path to the top of a mountain peak is 30°. After moving 1000 feet closer to the peak, he measures the angle of elevationto be 35°. How much higher is the top of the peak than the elevation at which Otis is standing?

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{h}{1000+x} \quad \tan 35^{\circ}=\frac{h}{x} \\
& (1000+x) \tan 30^{\circ}=h \quad x \tan 35=h \\
& 1000 \tan 30^{\circ}+x \tan 30^{\circ}=x \tan 35^{\circ} \\
& 1000 \tan 30^{\circ}=x \tan 35-x \tan 30 \\
& x=4699.36 \mathrm{ft} \quad h=3290.53 \mathrm{Ht}
\end{aligned}
$$

c. A boat travels at 30 mph from its home port on a course of 95° for 2 hours and then changes to a course of 185° for 2 hours. Determine the distance from the boat to its home port and the bearing from the home port to the boat.

$$
\begin{aligned}
& 60 \sqrt{2} \approx 84.85 \\
& \text { Bearing } 95+45=140^{\circ}
\end{aligned}
$$

d. Boats A and B leave from ports on opposite stares of a large lake. The ports are on an east-west line. Boat A steers a course of 105° and boat B steers a course of 195°. Boat A averages 23 mph and collides with boat B (it was a foggy night). What was boat B's average speed?

$$
\begin{aligned}
& \tan 15^{\circ}=\frac{x}{23} \\
& 23 \tan 15^{\circ}=x \\
& x=6.16 \mathrm{mph}
\end{aligned}
$$

