$$
\begin{aligned}
& \text { 15. } f(x)=5 x-x^{2} \\
& \\
& f^{\prime}(x)=5-2 x \\
& 0=5-2 x \\
& -5=-2 x
\end{aligned} \quad f^{\prime}(x) \quad \begin{gathered}
\frac{1}{2}- \\
\max
\end{gathered}
$$

$$
x^{0}=5 / 2 c \cdot V .
$$

a* There is a local max. of on $\left(\frac{5}{2}, \frac{25}{4}\right)$ because $f^{\prime}(x)$ goes from + to a) $x=5 / 2$.
$b-f(x)$ is increasing $(-\infty, 5 / 2]$ b/c $f^{\prime}(x)>0$ on the interval
C. $f(x)$ is decreasing $[5 / 2, \infty)$ b/c $f^{\prime}(x)<0$ on the interval.

$$
\begin{aligned}
& \text { 21. } y=4-\sqrt{x+2} \\
& y^{\prime}=-1 / 2(x+2)^{-1 / 2}(1) \\
& 0=\frac{-1}{2 \sqrt{x+2}} \quad y^{\prime} \neq 0
\end{aligned}
$$

Since the Domain $[-2, \infty)$
we need to check -2

a. y has a local max of $(-2,4)$ because $x=-2$ is an enspt and $y^{\prime}<0$ to the right of $x=-2$.
b. None c. y is decreasing $[-2, \infty)$ b/c $y^{\prime}<0$ on

$$
\text { 26. } \begin{aligned}
& K(x)=\frac{x}{x^{2}-4} \\
& \begin{aligned}
K^{\prime}(x) & =\frac{\left(x^{2}-4\right)-x(2 x)}{\left(x^{2}-4\right)^{2}} \\
& =\frac{x^{2}-4-2 x^{2}}{\left(x^{2}-4\right)^{2}} \\
& =\frac{-x^{2}-4}{\left(x^{2}-4\right)^{2}}
\end{aligned}
\end{aligned}
$$

b. Since $K^{\prime}(x)$ is never positive, $K(x)$ in not increasing on any interval.
C. Since $k^{\prime}(x)<0$ on wherever defined, $k(x)$ is de creasing on each interval of the domain $(-\infty,-2) \cup(-2,2)$ ($2, \infty$)
28. $g(x)=2 x+\cos x \quad$ a. $\begin{aligned} & \text { since } g^{\prime}(x) \neq 0 \text { and is never undefined } \\ & \text { there are no local extrema. }\end{aligned}$
$g^{\prime}(x)=2-\sin x$

$$
0=2-\sin x
$$

$$
-2=-\sin x
$$

$$
2 \neq \sin x
$$

b. since $g^{\prime}(x)>0$ on its entire domain, $g(x)$ is increasing $(-\infty, \infty)$.
c. $g(x)$ is never decreasing since $g^{\prime}(x)$ is always positive.
31. $f(x)=x^{3}-x^{2}+x+C$
32. $f(x)=-\cos x+C$
33. $f(x)=e^{x}+C$

