Dot Product
$$u = \langle u_1, u_2 \rangle$$
 $v = \langle v_1, v_2 \rangle$
 $u \cdot v = u_1 v_1 + u_2 v_2$

example
$$u = \langle -2,3 \rangle$$
 $v = \langle 4,8 \rangle$
 $u \cdot v =$
 $-2(4) + (3)(8) = -8 + 24 = 16$

$$u = 10i + 9j$$
 $V = -4i + 2j$
 $u \cdot V = 10(-4) + 9(2) = -22$

2.
$$u \cdot u = |u|^2$$

$$|u| = \sqrt{u \cdot u}$$

tuse the dot product to
find the length
$$\bar{u}$$
 $\angle 4,-3 \rangle$ $u \cdot u = 4(4) + (-3)(-3)$
 $= 25$
 $v \cdot u = 5 = length$

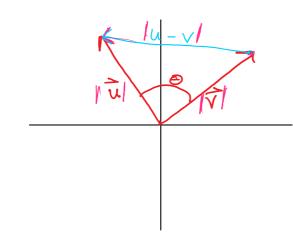
3.
$$0 \cdot u = 0$$
 4. $u(v+w) = \bar{u} \cdot \bar{v} + \bar{u} \cdot \bar{w}$

$$6. (c\vec{u})\vec{v} = \vec{u}(c\vec{v}) = c(\vec{u}.\vec{v})$$

- If the dot product = 0, then the vectors are orthogonal (perpendicular)
- A dectors are parallel if the have the same direction or are exactly opposite directions. Vectors are parallel if one is a scalar multiple of the other.
 - Ex: If u=24,-3 and v=27,K are orthogonal then find K.

$$4(7) + -3k = 0$$
 $k = \frac{28}{3}$
 $28 + -3k = 0$

Angles between 2 vectors



us(-y) u utiv unu

 $|u-v|^{2} = |u|^{2} + |v|^{2} - 2|u||v|\cos\Theta$ (u-v)(u-v) $u.u - 2u.v + v.v = |u|^{2} + |v|^{2} - 2|u||v|\cos\Theta$ $|u|^{2} - 2u.v + |v|^{2} = |u|^{2} + |v|^{2} - 2|u||v|\cos\Theta$ $|u|^{2} - 2u.v + |v|^{2} = |u|^{2} + |v|^{2} - 2|u||v|\cos\Theta$

$$-2v \cdot v = -2|v||v|\cos\theta$$

$$\cos\theta = \frac{u \cdot v}{|v||v|}$$

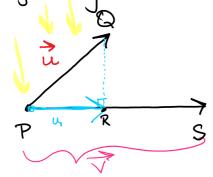
$$\Theta = \cos^{-1}\left(\frac{v \cdot v}{|v||v|}\right)$$

Example! If u=210,9 V=2-4,2 the angle between $u \neq V$.

$$\cos \theta = \frac{10(-4) + 9(2)}{\sqrt{|g|} \cdot \sqrt{20}} \quad \theta = \cos^{2}\left(\frac{-22}{\sqrt{|g|} \cdot 20}\right)$$

$$= 111^{\circ}$$

one vector onto another



Proje U

The vector projection of $\tilde{k} = PQ$ onto a non-zero S vector $\tilde{V} = P\tilde{S}$ is the vector PR determined by dropping a I from a to the Ps.

$$\vec{u} = \vec{PR} + \vec{RQ}$$
 $\vec{RQ} = \vec{u} - \vec{PR}$ or $\vec{u} - \vec{u}$,

$$Proj_{v}v = \left(\frac{v \cdot v}{|v|^{2}}\right)v$$
scalar

* Decomposing a vector into Respenicular components