3.5 Day 2

Wednesday, September 21, 2016 7:25 AM

3.5B Notes Derivatives of Trigonometric Functions Name

1. Find the following derivatives.

Find the following derivatives.
a.
$$\frac{d}{dx}(\frac{1}{3}x^{3} - \cos x)$$

 $\chi^{2} - (-\sin x)$
 $\chi^{2} + \sin x$
b. $\frac{d}{dx}x^{3}\cos x$
 $\cos x(3x^{2}) + \chi^{3}(-\sin x)$
 $3x^{2}\cos x - \chi^{3}\sin x$
 $\cos x(3x^{2}) + \chi^{3}(-\sin x)$
 $3x^{2}\cos x - \chi^{3}\sin x$
 $4anx(3x^{2}) - \chi^{3}se^{2}x$
 $4an^{2}x$

2. Find the equation of the tangent line at the indicated point.

a.
$$y = \cos t$$
, $t = \frac{\pi}{3}$
p.o.t $y = \cos(\frac{\pi}{3})$
 $m = y^{1}$
 $= \frac{1}{2}$
 $y' = -\csc \cos(\frac{\pi}{4}) = \sqrt{2}$ $(\frac{\pi}{4}, \sqrt{2})$
 $y' = -\csc \cos(\frac{\pi}{4}) = \sqrt{2}$ $(\frac{\pi}{4}, \sqrt{2})$
 $y' = -\csc \cos(\frac{\pi}{4}) = \sqrt{2}$
 $y' = -\csc \cos(\frac{\pi}{4}) = \sqrt{2}$
 $y' = -\csc \cos(\frac{\pi}{4}) = \sqrt{2}$
 $y' = -\csc \cos(\frac{\pi}{4}) = \sqrt{2}$

3. Show that both $\underline{y} = \cos x$ and $y = \sin x$ satisfy y'' = -y y'' = -y

$$y = \cos x$$

$$y' = -\sin x$$

$$y'' = -\cos x$$

$$y'' = -\cos x$$

$$y''' = -\sin x$$

$$y''' = -\cos x$$

$$y''' = -\cos x$$

4. Calculate the first five derivatives of $f(x) = \cos x$ then determine the 8th and 37th derivatives of $f(x) = \cos x$

$f(x) = \cos x$ $f'(x) = -\sin x$	$d_{yg}^{8x} = \cos x$ $d_{yg}^{37x} = -\sin y$	<u>9</u> RI) 4[37
$f''(x) = -\cos x$ f'''(x) = S(n)x f'''(x) = (cs)x	$\frac{d^{37}x}{dy^{37}} = -\sin x$	

Jerk

Jerk is the derivative of acceleration. If a body's position at time t is s(t), the body's jerk at time t is

$$j(t) = \frac{da}{dt} = \frac{d^3s}{dt^3}$$

6. A body is moving in simple harmonic motion with position function s = f(t) (s in meters, t in seconds). Find the jerk at time t given $s = 2 + 3\sin t$.

7. Find the values of x on the interval $(0, 2\pi)$ where the tangent line to the graph of $f(x) = \sin x \cos x$ is horizontal. Check your solutions on your graphing calculator.

$$f'(x) = 0$$

$$f'(x) = \cos x (\cos x) + \sin x (-\sin x)$$

$$O = \cos^2 x - \sin^2 x$$

$$\sin^2 x = \cos^2 x$$

$$x = \frac{4\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$$