Derivatives

3. 1 Day 1 Wednesday, August 28, 2019 8:19 AM

Det: The <u>derivative</u> of a function f(x) with respect to x is the function f'(x) whose value at x is: $f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$ * The function f'(x) outputs slopes of f(x) at any point x on the curve. * If the derivative exists, then we say the function is differentiable. Differentiale $f(x) = x^3$ Exio $f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{1_2}$ $= \lim_{h \to \infty} \frac{x^{2} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}}{h}$ $= \lim_{x \to \infty} \frac{1}{2} \left(\frac{3x^2 + 3xh + h^2}{2xh + h^2} \right) = 3x^2 + 3x(0) + (0)^2$ N-20 h $f'(x) = 3x^2$ Find the slope of f ad X=2

а.

a. Find the slope of
$$f @ X = 2$$

 $f'(2) = 3(2)^2 = 12$

b. Find the equation of the tangent line to
$$f(x) = 3x=3$$
.
 $f(3)=3=27$ (3,27) p.o.2 $m=5'(3)=3(3)^2=27$
 $y=27=27(x-3)$

Another def. of a derivative

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
is the derivative
of $f = 0$ $x = a$

$$\mathcal{E}_{x}$$
: $f(x) = \frac{1}{x}$ find $f'(a)$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$\lim_{x \to a} \frac{a - x}{x - a}$$

$$\lim_{x \to a} \frac{-1}{a - a}$$

$$\int_{x - a} \frac{f(x) - f(a)}{a - a}$$

$$\lim_{x \to a} \frac{-1}{a - a}$$

$$\lim_{x \to a} \frac{-1}{a - a}$$

$$\int_{x - a} \frac{f'(a) - f(a)}{a - a}$$

\$

~

a. Write the eight of the hormal to
$$f(x)$$

at $x=2$.
 $f(a)=\frac{1}{2}3^{2n-1}f'(a)=\frac{-1}{2^{2n}}=\frac{-1}{4}3^{1}$ success of line
 $y-\frac{1}{2}=4(x-2)$

you try.... Differentiate $f(x) = x^4 - 3$ $f'(a) = \lim_{X \to a} \frac{(x^4 - 3) - (a^4 - 3)}{x - a}$ $= \lim_{x \to a} \frac{x^4 - a^4}{x - a}$ = $\lim_{x \to a} \frac{(x^2 - a^2)(x^2 + a^2)}{(x - a)}$ $f'(x) = 4x^3$ $= \lim_{x \to a} \frac{(xa)(x+a)(x^2+a^2)}{(xa)}$ $= (a+a)(a^2+a^2)$ $= 2a(2a^2) = 4a^3$

Notations

f(x) => derivative of f u/respect to x.

$$y' \Rightarrow \forall xief$$
, doesn't indicate the indep. variable
 $\frac{dy}{dx} \Rightarrow dxivative of y w respect to x$
 $\frac{df}{dx} \Rightarrow dxivative of f w respect to x$
 $\frac{df}{dx} [f(x)] \Rightarrow derivative of f w respect to x$
 $\frac{dx}{dx} [f(x)] \Rightarrow derivative of f w respect to x$
 $\frac{dx}{dx} (x^3) \Rightarrow 3x^2$