
Exponential Functions

3. | Wednesday, November 14, 2018 2:06 PM

• Let
$$a \notin b$$
 be real constants
• Exponential Function can be written
in the form $f(x) = a \cdot b^{\times}$ where $a \neq 0$
 $b > 0 \notin b \neq 1$. Domain: $(-\infty, \infty)$
 $f(b) = a \cdot b^{\circ} = a$
• initial value (o, a)
 $b = base$
which of the following are exponential
functions?
 $a. y = 3 \cdot 2^{\times}$ $b. y = x^{\times}$ $c. y = 2^{-\times} = (\frac{1}{2})^{\times}$
 $y = y = b^{\circ} 2^{\times}$ $b. y = x^{\times}$ $c. y = 2^{-\times} = (\frac{1}{2})^{\times}$
 $a. y = 3 \cdot 2^{\times}$ $b. y = x^{\times}$ $c. y = 2^{-\times} = (\frac{1}{2})^{\times}$
 $a. y = \frac{3 \cdot 2^{\times}}{3 \cdot 2^{\times} + 6^{\times}}$ $b = \frac{1}{2}$
 $b = \frac{1}{2}$
 $b = \frac{1}{2}$
 $b = \frac{1}{4}$ $b = e$

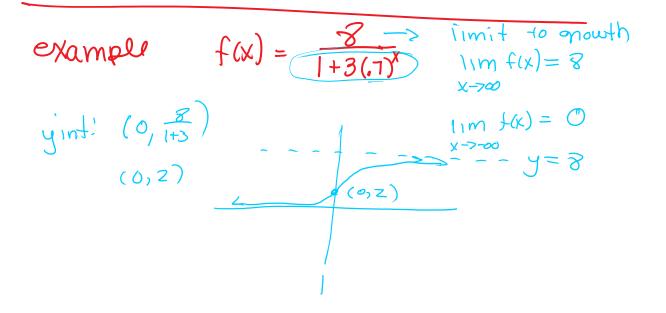
Exponential Functions have an add-multiply property. $f(x) = 4b^{x}$ $f(x) = 4b^{x}$ $f(x) = 4b^{y}$ $f(x) = 4b^{y}$ $f(x) = 40^{y}$ $f(x) = 40^{y}$ $f(x) = 40^{y}$

Notes Page 1

• | .|....

Parent Function
$$f(x) = d^{2}$$

state the transformations performed on
 $f(x)$ to get $g(x)$.
a. $g(x) = 1 - 3 \cdot 2^{x-1}$ b. $g(x) = 5 + 2^{3x+1}$
 $\frac{H}{1. Reflect over the x-axis z. shrink z. stretch bado 3 z. shrink z. stretch bado 3 z. shrink the y-axis z. stretch bado 3 z. reflect over the y-axis$


given
$$f(x) = \left(\frac{1+\frac{1}{x}}{x}\right)^{x}$$

$$\lim_{x \to \infty} f(x) = C \notin Z.718$$

Notes Page 3

$$f(x) = \frac{C}{1+a \cdot b^{\chi}}$$
 or $f(x) = \frac{C}{1+ae^{-\kappa_{\chi}}}$

** where C is the limit to growth.

