\qquad

1. (no calculator)

Let $f(x)=3+2 \sin x$
(a) Write an equation of the line tangent to the graph of f at $x=\frac{\pi}{6}$.

$$
\left.\begin{array}{rlrl}
\text { Point : } f\left(\frac{\pi}{6}\right) & =3+2 \sin \frac{\pi}{6} & \text { slope: } \begin{array}{rl}
f^{\prime}(x) & =2 \cos x \\
\left(\frac{\pi}{6}, 4\right) & =3+2\left(\frac{1}{2}\right)
\end{array} & f^{\prime}\left(\frac{\pi}{6}\right)
\end{array}=2 \cos \frac{\pi}{6}\right)
$$

(b) Find the values of x in $[\mathrm{o}, 2 \pi)$ for which the graph of f has a horizontal tangent.

$$
\begin{aligned}
f^{\prime}(x)=2 \cos x & =0 \\
\cos x & =0 \\
x & =\frac{\pi}{2}, \frac{3 \pi}{2}
\end{aligned}
$$

(c) Find $f^{\prime \prime}(x)$.

$$
f^{\prime \prime}(x)=-2 \sin x
$$

2. (no calculator)

Let $f(x)=2 x^{3}-x$ and $g(x)=\frac{f(x)}{x}$.
(a) What is the slope of the graph of f at $x=-1$? Show the work that leads to your answer.

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-1 \\
& f^{\prime}(-1)=6(-1)^{2}-1=5
\end{aligned}
$$

(b) Write an equation of the line tangent to the graph of g at $x=-1$. (Quotient Rule)

Point $g(-1)=\frac{2(-1)^{3}-(-1)}{-1}$ slope

$$
(-1,1) \quad g(-1)=1
$$

$$
\begin{aligned}
-1 .(x) & =\frac{x\left(6 x^{2}-1\right)-\left(2 x^{3}-x\right)(1)}{x^{2}} \\
& =\frac{6 x^{3}-x-2 x^{3}+x}{x^{2}}=\frac{4 x^{3}}{x^{2}}=4 x \\
g^{\prime}(-1) & =4(-1)=-4
\end{aligned}
$$

(c) What is the slope of the line normal to the graph of g at $\mathrm{x}=-1$?

$$
y-1=-4(x+1)
$$

$$
\perp \text { slope }=\frac{1}{4}
$$

3. (no calculator)

Evaluate each limit analytically.
(Note: Finding the answer should not involve a lengthy algebraic process.)
(a) $\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}$ (a) $f(x)=\sin x \quad f^{\prime}(x)=\cos x$
(b) $\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}$
(b) $f(x)=\sqrt[3]{x}$
(c) $\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-4}{h}$
(d) $\lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}$
(c) $\begin{aligned} f(x) & =\sqrt{x} \\ & =x^{1 / 2}\end{aligned}$ at $x=16$

$$
=x^{1 / 3}
$$

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(16)=\frac{1}{2 \sqrt{16}}=\frac{1}{8}
\end{aligned}
$$

(d) $f(x)=\frac{1}{x} \quad$ at $x=5 \quad f^{\prime}(x)=\frac{-1}{x^{2}}$

$$
f^{\prime}(5)=\frac{-1}{(5)^{2}}=\frac{-1}{25}
$$

4. Given:

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	-3	1	5	-2
5	4	7	-1	2

(a) If $h(x)=\frac{f(x)}{g(x)}$, find $h^{\prime}(2)$.

$$
\begin{aligned}
& h^{\prime}(x)=\frac{g(x) \cdot f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \\
& h^{\prime}(2)=\frac{g(2) \cdot f^{\prime}(2)-f(2) g^{\prime}(2)}{[g(2)]^{2}}=\frac{5 \cdot 1-(-3) \cdot(-2)}{5^{2}}=\frac{5-6}{25}=\frac{-1}{25}
\end{aligned}
$$

(b) If $j(x)=f(x) \bullet g(x)$, find $\mathrm{j}^{\prime}(5)$.

$$
\begin{aligned}
j^{\prime}(x) & =f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) \\
j^{\prime}(5) & =f(5) \cdot g^{\prime}(5)+g(5) \cdot f^{\prime}(5) \\
& =4 \cdot 2+(-1) \cdot(7) \\
& =8-7=1
\end{aligned}
$$

5. (nu calculator)

Given: $f(x)=x^{2}$
(a) Find the slope of the normal line to the graph of f at .

$$
r=-3
$$

(b) Two linếs passing through the point (3,8) will be tangent to the graph of f. Find an equation tor each of these lines.

$$
\text { a) } \begin{aligned}
f^{\prime}(x) & =2 x \\
f^{\prime}(-3) & =2(-3)=-6 \\
\perp m & =\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x=\frac{x^{2}-8}{x-3} \quad \text { slope between }(3,8) \text { and }\left(x, x^{2}\right) \\
& 2 x^{2}-6 x=x^{2}-8 \\
& x^{2}-6 x+8=0
\end{aligned}
$$

$\left.\begin{array}{l}\text { (b) } \\ f(x)\end{array} \int \begin{array}{ll}\left(x, x^{2}\right) & f^{\prime}(x)=2 x=\text { slope of tangent } \\ \text { lines }\end{array} \quad(x-2)(x-4)=2\right)$

$$
\begin{aligned}
& \text { f tangent }(x-2)(x-4)=0 \\
& x=2,4 \\
& \text { Point }(2,4) \text { slope } f^{\prime}(2)=4 \quad y-4=4(x-2) \\
& \text { Point }(4,16) \text { slope } f^{\prime}(4)=8 \quad y-16=8(x-4)
\end{aligned}
$$

6. The accompanying diagram shows the graph of the velocity in $\frac{\mathrm{ft}}{\mathrm{sec}}$ for a particle moving along the line $x=4$.

(a) During which time interval is the particle:
(i) moving upward? $[0,1) \cup(4.4,5]$
(ii) moving downward? $(2,4.4)$
(iii) at rest? $[1,2] \cup[4,4]$
(b) State the acceleration of the particle at the specified times. $a(t)=v^{\prime}(t)=$ slope of velocity Include units. graph
(i) $t=0.75 \quad a(.75)=-2 \mathrm{ft} / \mathrm{sec}^{2}$
(ii) $t=4.2 \quad a(4.2)=5 \mathrm{ft} / \mathrm{sec}^{2}$
7. (no calculator)

Given: $g(x)=f(x) \cdot \tan x+k x$, where k is a real number. .
f is differentiable for all $x ; f\left(\frac{\pi}{4}\right)=4 ; f^{\prime}\left(\frac{\pi}{4}\right)=-2$.
(a) For what values of x, if any, in the interval $0<x<2 \pi$ will the derivative of g fail to exist? Justify your answer.
(b) If $g^{\prime}\left(\frac{\pi}{4}\right)=6$, find the value of k.
(a) $g(x)$ has infinite discontinuities at $x=\frac{\pi}{2}, \frac{3 \pi}{2}$
in $(0,2 \pi)$ so $g^{\prime}(x)$ will not exist at $x=\frac{\pi}{2}, \frac{3 \pi}{2}$.
(b)

$$
\begin{aligned}
g^{\prime}(x) & =f(x) \cdot \sec ^{2} x+f^{\prime}(x) \tan x+k \\
g^{\prime}\left(\frac{\pi}{4}\right) & =f\left(\frac{\pi}{4}\right) \cdot \sec ^{2}\left(\frac{\pi}{4}\right)+f^{\prime}\left(\frac{\pi}{4}\right) \tan \frac{\pi}{4}+k \\
& =4 \cdot(\sqrt{2})^{2}+(-2)(1)+k=6 \\
& 8-2+k=6
\end{aligned}
$$

8. The table provided below shows the position of a particle, S, at several times, t, as the particle moves along a straight line, where t is measured in seconds and S is measured in meters.

t	2.0	2.7	3.2	3.8
$S(t)$	5.2	7.8	10.6	12.2

Which of the following hest estimates the velocity of the particle at $t=3$?
(a) $9.2 \frac{\mathrm{~m}}{\mathrm{~s}}$
(b) $7.8 \frac{\mathrm{~m}}{\mathrm{~s}}$
(c) $5.6 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
a \vee g \text { vel }=\frac{10.6-7.8}{3.2-2.7}=\frac{2.8}{.5}=5.6
$$

