Calculus
Review 3.1-3.3
Name

No Calculator
(1-2) Use the definition of a derivative to find the following:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { or } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\begin{aligned}
& \text { 1. if } f(x)=\sqrt{2 x-1} \text { find } f^{\prime}(5) \\
& \text { 2. if } f(x)=\frac{1}{2 x-1} \text { find } f^{\prime}(x) \\
& f^{\prime}(5)=\lim _{x \rightarrow 5} \frac{(\sqrt{2 x-1}-3)}{x-5} \cdot \frac{(2 x-1+3)}{(\sqrt{2 x-1}+3)} \\
& =\lim _{x \rightarrow 5} \frac{2 x-1-9}{(x-5)(\sqrt{x-1}+3)} \quad \rightarrow \lim _{x \rightarrow 5} \frac{2(x-5)}{(x-5)(\sqrt{2 x-1}+3)}=\lim _{n \rightarrow 0} \frac{\frac{1}{2 x+2 h-1}-\frac{1}{2 x-1}}{n} \\
& =\lim _{x \rightarrow 5} \frac{2 x-10}{(x-5)(\sqrt{2 x-1}+3)}=\frac{2}{\sqrt{9}+3}=\frac{2}{6}=\frac{1}{3} \\
& =\left\{\begin{array}{l}
=\lim _{h \rightarrow 0} \frac{\frac{2 x-x-2 x-2 h+1}{(2 x-1)(2 x+2 h-1)}}{h} \\
=\lim _{h \rightarrow 0} \frac{-2 x^{2}}{(2 x-1)(2 x+2 h-1)^{\circ} \frac{1}{y}}=\frac{-2}{(2 x-1)^{2}}
\end{array}\right. \\
& \text { Given } f(x) \text {, sketch } \frac{d f}{d x} \\
& \text { 3) } \\
& \frac{d f}{d x}
\end{aligned}
$$

5. Sketch the graph of the continuous function $f(x)$ that has the following properties:

$$
f(2)=3 \quad \text { and } \quad f^{\prime}(x)=\left\{\begin{array}{l}
-2 \text { for } x<0 \\
3 \text { for } x>0
\end{array}\right.
$$

6. $f(x)=8 x^{5}-6 x^{3}+\frac{3}{4} x^{2}+5$ find $f^{\prime}(x)$

$$
f^{\prime}(x)=40 x^{4}-18 x^{2}+\frac{3}{2} x
$$

$$
\begin{aligned}
& \text { 7. Find } \frac{d y}{d t} \text { if } y=\frac{4 t^{2}-t}{3 t+2} \\
& \frac{d y}{d t}=\frac{(3 t+2)(8 t-1)-\left(4 t^{2}-t\right)(3)}{(3 t+2)^{2}} \\
&=\frac{24 t^{2}+16 t-3 t-2-12 t^{2}+3 t}{(3 t+2)^{2}} \\
& \frac{d y}{d t}=\frac{12 t^{2}+16 t-2}{(3 t+2)^{2}}
\end{aligned}
$$

8. Evaluate: $\frac{d}{d x}\left((3 x-1)\left(5 x^{4}-2 x+4\right)\right)$

$$
=\left(5 x^{4}-2 x+4\right)(3)+(3 x-1)\left(20 x^{3}-2\right)
$$

$$
=15 x^{4}-6 x+12+60 x^{4}-6 x-20 x^{3}+2
$$

$$
=75 x^{4}-20 x^{3}-12 x+14
$$

9. Write the equation of the tangent line to $g(x)=\frac{1-5 x}{2 x}$ at $x=3$.

$$
\begin{aligned}
& \partial^{(3)}=\frac{1-5(3)}{6}=\frac{-14}{6}=\frac{-7}{3} \\
& g^{\prime}(x)=\frac{2 x(-5)-(1-5 x)(2)}{(2 x)^{2}} \quad\left\{\begin{array}{l}
g^{\prime}(3)=6(-5)-(1-15) \\
=\frac{-30+28}{36}=-\frac{1}{18}
\end{array},=\frac{6^{2}}{36}\right.
\end{aligned}
$$

10. Where does $h(x)=\frac{1}{3} x^{3}-\frac{x^{2}}{2}+1$ have horizontal tangents? $y+7 / 3=\frac{-1}{18}(x-3)$

$$
h^{\prime}(x)=0
$$

$$
x^{2}-x=0
$$

$$
x=0 \quad \varepsilon \quad x=1
$$

11) Let $h(x)=f(x) \cdot g(x)$ and $j(x)=\frac{f(x)}{g(x)}$. Fill in the missing entries in the table below using the information about f and g given and the definitions of h and $j . \quad h^{\prime}(x)=g(x) \cdot f^{\prime}(x)+f(x) \cdot g^{\prime}(x)$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$h^{\prime}(x)$	$j^{\prime}(x)$
-2	1	-1	-3	4	7	$\frac{-1}{9}$
-1	0	-2	1	1	-2	-2
0	-1	2	-2	1	-5	$-3 / 4$

$$
\begin{aligned}
j^{\prime}(x) & =\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} \\
h^{\prime}(2) & =g(-2) \cdot f^{\prime}(-2)+f(z) \cdot g^{\prime}(-2) \\
& =-3(-1)+1 \cdot(4)
\end{aligned}
$$

$$
j^{\prime}(0)=\frac{g(0) \cdot f^{\prime}(0)-f(0) \cdot g^{\prime}(0)}{(g(0))^{2}}=\frac{-2 \cdot 2-(-1)(1)}{(-2)^{2}} n^{\prime}(0)=g(0) \cdot f^{\prime}(0)+f(0) \cdot g^{\prime}(0)
$$

1 Suppose that $f(1)=2$ and f^{\prime} is the function shown below. Let $m(x)=x^{3} \cdot f(x)$

Graph of f^{\prime}

bk $f(1)>0$ and f is increasing since $f^{\prime}(0)$ $-f^{\prime}(2)>0$
a) Is $f(x)$ increasing or decreasing at $x=-3$?

$$
\begin{aligned}
& f^{\prime}(-3)=-4 \therefore f(x) \text { is derecesing } \\
& \text { Find the equation of the tangent line to } x=-3
\end{aligned}
$$

b) Find the equation of the tangent line to $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=1$.

$$
\begin{aligned}
f(1)=2 & f^{\prime}(1)
\end{aligned}=4
$$

c) Evaluate $m^{\prime}(1)$

$$
\begin{array}{r}
m^{\prime}(1)=f(1) \cdot 3+1 \cdot f^{\prime}(1) \\
2 \cdot 3+1 \cdot 4=10
\end{array}
$$

d) Show that m is increasing at 2

$$
\begin{aligned}
m^{\prime}(2)= & f(2) \cdot 3(2)^{2}+2^{3} \cdot f^{\prime}(2) \\
= & f(2)(12)+8 \cdot 1 \\
& f(12)+8 \geq 0
\end{aligned}
$$

e) Estimate $f^{\prime \prime}(1)$

$$
\approx-2
$$

