Derivatives worksheet (3.1-3.3 concepts)

1) Let $h(x)=f(x) \cdot g(x)$ and $j(x)=\frac{f(x)}{g(x)}$. Fill in the missing entries in the table below using the information about f and g given and the definitions of h and j.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$	$h^{\prime}(x)$	$j^{\prime}(x)$
-2	1	-1	-3	4	-7	$\frac{-1}{9}$
-1	0	-2	1	1	-2	-2
0	-1	2	-2	1	5	$-3 / 4$

$$
\left\{\begin{array}{l}
h^{\prime}(-2)=f(-2) \cdot g^{\prime}(-2)+f^{\prime}(-2) \cdot g(-2) \\
j^{\prime}(-1)=\frac{g(-1) \cdot f^{\prime}(-1)-g^{\prime}(-1) f(-1)}{[g(-1)]^{2}}
\end{array}\right.
$$

Given $f(x)$, sketch $\frac{d f}{d x}$
3)

4)

5) Given f^{\prime}, sketch a possible graph for f

