

Derivatives worksheet (3.1-3.3 concepts)

1) Let $h(x) = f(x) \cdot g(x)$ and $j(x) = \frac{f(x)}{g(x)}$. Fill in the missing entries in the table below using

the information about f and g given and the definitions of h and i.

the information about f and g given and the definitions of h and							
х	f(x)	f'(x)	g(x)	g'(x)	h'(x)	j'(x)	
-2	1	-1	-3	4	7	$\frac{-1}{9}$	
-1	0	-2	1	1	-2	-2	
0	-1	2	-2	1 -	-5	-3/4	

$$h'(-2) = f(2) \cdot g'(-2) + f'(-2) \cdot g(-2)$$

$$j'(-1) = g(-1) \cdot f'(-1) - g'(-1)f(-1)$$

$$\boxed{g(-1)}^{2}$$

2) Suppose that f(1) = 2 and f' is the function shown below. Let $m(x) = x^3 \cdot f(x)$

- a) Is f(x) increasing or decreasing at x = -3?
- b) Find the equation of the tangent line to f(x) at x = 1.

$$f'(1)=4$$

Slope $(y-2=4(x-1)$

- c) Evaluate m'(1) $m'(x) = f(x) \cdot 3x^2 + x^3 \cdot f'(x)$
- m'(1)=2-3+1.4=10
- > d) Show that m is increasing at 2

$$m'(2) = f(2) \cdot 12 + 8 \cdot (1) = pos.$$

e) Estimate f''(1)

5) Given f', sketch a possible graph for f

