\qquad
1.

t Hours	0	1	3	6	8
$\mathrm{R}(\mathrm{t})$ Liters/hour	1340	1190	950	740	700

Water is removed from a tank at a rate modeled by $R(t)$ liters per hour, where R is differentiable and decreasing on $0 \leq \mathrm{t} \leq 8$. Selected values of $\mathrm{R}(\mathrm{t})$ are shown in the table above. Estimate $R^{\prime}(2)$. Show your work that leads to your answer. Indicate the appropriate units.

$$
\frac{R(3)-R(1)}{3-1}=\frac{950-1190}{2}=-\frac{240}{2}=-120 \text { liters } / \text { hour }^{2}
$$

2. (no calculator)

Let $f(x)=2 x^{3}-x$ and $g(x)=\frac{f(x)}{x}$.
(a) What is the slope of the graph of f at $x=-1$? Show the work that leads to your answer.

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-1 \\
& f^{\prime}(-1)=6(-1)^{2}-1=5
\end{aligned}
$$

(b) Write an equation of the line tangent to the graph of g at $\mathrm{x}=-1$. (Quotient Rule)

$$
\begin{aligned}
& \text { Write a equation of the line tangent the the graph o(gat } x=-1 \text { (equtient (Tux) } \\
& \text { Point } g(-1)=\frac{2(-1)^{3}-(-1)}{-1} \text { Slope } g^{\prime}(x)=\frac{x\left(6 x^{2}-1\right)-\left(2 x^{3}-x\right)(1)}{x^{2}} \\
& =\begin{aligned}
&=\frac{6 x^{3}-x-2 x^{3}+x}{x^{2}}=\frac{4 x^{3}}{x^{2}}=4 x \\
&(-1,1) \quad g(-1)=1
\end{aligned} \\
& g^{\prime}(-1)=4(-1)=-4
\end{aligned}
$$

(c) What is the slope of the line normal to the graph of g at $\mathrm{x}=-1$?

$$
\perp \text { slope }=\frac{1}{4}
$$

3. Evaluate each limit analytically. Note: Finding the answer should not involve a lengthy algebraic process.
a. $\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}$
b. $\lim _{h \rightarrow 0} \frac{\sqrt{16+h}-4}{h}$

$$
\begin{aligned}
& f(x)=\sqrt[3]{x}=x^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}
\end{aligned}
$$

c. $\lim _{h \rightarrow 0} \frac{\frac{1}{5+h}-\frac{1}{5}}{h}$

$$
f(x)=\sqrt{x} \quad x=16
$$

$$
\begin{aligned}
f(x)=\sqrt{x} & \begin{aligned}
& x=16 \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}
\end{aligned} \begin{array}{r}
f^{\prime}(16)=\frac{1}{2 \sqrt{16}} \\
\\
=\frac{1}{8}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{x} \quad \text { a } x
\end{aligned}=5 \begin{aligned}
f^{\prime}(x)=-\frac{1}{x^{2}} \quad f^{\prime}(5) & =\frac{-1}{5^{2}} \\
& =-1 / 25
\end{aligned}
$$

4. Given:

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	-3	1	5	-2
5	4	7	-1	2

(a) If $h(x)=\frac{f(x)}{g(x)}$, find $h^{\prime}(2)$.

$$
\begin{aligned}
& \text { (a) If } h(x)=\frac{\prime(1)}{g(g)} \text {, find } h^{\prime}(2) . \\
& h^{\prime}(x)=g^{\prime}(x) \cdot f^{\prime}(x)-f(x) \quad(x) \\
& \qquad[g(x)]^{2} \\
& h^{\prime}(2)=\frac{\left.g(2) \cdot f^{\prime}(2)-f(2) g 2\right)=\frac{5 \cdot 1-(-3) \cdot(-2)}{5^{2}}=\frac{5-6}{25}=\frac{-1}{25}}{}[g(2)]^{2}
\end{aligned}
$$

(b) If $j(x)=f(x) \bullet g(x)$, find $\mathrm{j}^{\prime}(5)$.

$$
\begin{aligned}
j^{\prime}(x) & \left.=f(x) \cdot g^{\prime}(x)+g(x) \cdot f 1\right) \\
j^{\prime}(5) & =f(5) \cdot g^{\prime}(5)+g(5) \cdot-(5) \\
& =4 \cdot 2+(-1) \cdot(7) \\
& =8-7=1
\end{aligned}
$$

5. (nu calculator)

Given: $f(x)=x^{2}$
(a) Find the slope of the normal line to the graph of f at

$$
x=-3
$$

(b) Two linêes passing through the point (3,8) will be tangent to the graph of f. Find an equation tor each of these lines.
a)

$$
\begin{aligned}
& f^{\prime}(x)=2 x \\
& f^{\prime}(-3)=2(-3)=-6 \\
& \perp m=\frac{1}{6}
\end{aligned}
$$

$$
2 x=\frac{x^{2}-8}{x-3} \quad \begin{aligned}
& \text { slope between } \\
& (3,8) \text { and }\left(x, x^{2}\right.
\end{aligned}
$$

$$
2 x^{2}-6 x=x^{2}-8
$$

$$
(3,8) \text { and }\left(x, x_{R}^{2}\right)
$$

$$
x^{2}-6 x+8=0
$$

$f(x)$
$\begin{aligned} f^{\prime}(x)=2 x= & \text { slope of tangent } \\ & \text { lines }\end{aligned}$

$$
\begin{aligned}
& \text { f tangent }(x-2)(x-4)=0 \\
& \quad x=2,4 \\
& \text { Point }(2,4) \text { slope } f^{\prime}(2)=4 \quad y-4=4(x-2)
\end{aligned}
$$

$$
\text { Print }(4,16) \text { slope } f^{\prime}(4)=8 \quad y-16=8(x-4)
$$

