\qquad

1. A number plus twice a second number is 108 . Find the two numbers that give a maximum product.

$$
X=54 \text { IS A MAXIMUM }
$$

$$
\begin{array}{rl}
x+2 y=\frac{108}{108-x} \\
y=\frac{108-54}{2}=27 \\
\rho=x y=x\left(\frac{108-x}{2}\right) & y=\frac{108}{2} \\
\rho=54 x-\frac{1}{2} x^{2} & x=54, y=27
\end{array}
$$

2. A rectangular solid with a square base has a surface area of 150 square inches.
a) Find the maximum volume of the solid and its dimensions.

$$
\begin{aligned}
& S A=2 x^{2}+4 x h=150 \\
& h=\frac{150-2 x^{2}}{4 x} \\
& V=x^{2} \cdot h=x^{2}\left(\frac{150-2 x^{2}}{4 x}\right) \\
& x=5 \text { MAXIMIZES } V \\
& 0 x=5 \cdot h=5 \\
& V_{\text {max }}=x^{2} \cdot h=125 I N^{3}
\end{aligned}
$$

b) What dimensions can this rectangular solid have if it must have a volume over 100 cubic inches?

$$
100<x^{2} \cdot\left(\frac{150-2 x^{2}}{4 x}\right)<125 \text { solve graph really }
$$

Base: $3.042 \mathrm{IN}<x<6.729$ IN
HeIght: $2.208 \pm N>\frac{156-2 x^{2}}{4 X}>0.806 I N$
3. The diameter plus the height of a cylindrical package is equal to 108 inches.
a) Find the dimensions of the package that gives you a maximum volume.

$$
\begin{array}{cl}
d+h=108 & d=22 \text { MAXIMIzes } V \\
h=108-d & h=108-d=36 \mathrm{iN} \\
V=\pi\left(\frac{d}{2}\right)^{2} h & V_{\text {MAX }}=146,574.15 \text { IN }^{3}
\end{array}
$$

$$
V=\pi \frac{d^{2}}{4}(108-d)
$$

b) Find the dimensions of the package if the volume must be over 100,000 cubic inches.

$$
100,000<\pi \frac{d^{2}}{4}(108-d)<V_{\operatorname{mAX}}
$$

solve graphreatly.
diameter: 44.931 IN $<d<93.407$ IN
HeIght: 63.069 IN $<108-d<14.593$ Iv

