2.3 Day 2 (8/21)

Tuesday, August 20, 2019 9:24 AM

AP Calculus BC
Continuous Functions
A function $f(x)$ is continuous at $x=c$ only when the following conditions hold:
i) $f(c)$ exists
ii) $\lim _{x \rightarrow c} f(x)$ exists
iii) $\lim _{x \rightarrow c} f(x)=f(c)$

Determine whether each function is continuous at the given number. If it is not, tell why.

1. $f(x)=\left\{\begin{array}{cc}x & 0 \leq x<1 \\ 2-x & x \geq 1\end{array}\right.$ at $x=1$
2. $f(x)=\left\{\begin{array}{cc}x^{2} & 0 \leq x<2 \\ 4 & x>2\end{array}\right.$ at $x=2$
3. $f(1)=2-1=1$
4. $f(2)=$ due
5. $\lim _{x \rightarrow 1^{-}} f(x)=1 \quad \lim _{x \rightarrow 1^{+}} f(x)=1$ f is discontinuous o $x=2$ bIc $f(z) d n e$.

$$
\lim _{x \rightarrow 1} f(x)=1
$$

3. $\lim _{x \rightarrow 1} f(x)=f(1) \quad f$ is continuous a $x=1 \sin \theta\left(\lim _{x \rightarrow 1} f(x)=f(1)\right.$.
4. $f(x)=\left\{\begin{array}{cc}x^{3} & x<2 \\ 2 x+5 & x \geq 2\end{array}\right.$ at $x=2$
5. $f(x)=\left\{\begin{array}{cc}\sqrt{x} & 0 \leq x<9 \\ 2 x-15 & x \geq 9\end{array}\right.$ at $x=9$

$$
\text { 1. } f(2)=2(2)+5=9
$$

2. $\lim _{x \rightarrow 2^{-}} f(x)=8 \quad \lim _{x \rightarrow 2^{+}} f(x)=9$

$$
f \text { is disc. } \partial x=2 \text { blc }
$$

$$
\lim _{x \rightarrow 1} f(x)=d n e
$$

5. $f(x)=\frac{x+1}{x+5}$

Name \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

