9.2 HW

Friday, December 27, 2019 9:27 AM

Packet Page 601 #3-15odd, 16, 19, 25, 29, 42, 48, 52, 75, 91, 92

3. 5=3 5=3-9/2= -1.5 5=3-9/2+27/4=5.25 54= 5.25-81/8= 4.875 55= 6.3125 $5 = \frac{3}{2^{n-1}} + S_1 = 3 + S_2 = 4.5 + S_3 = 5.25 + S_4 = 5.625 + S_5 = 5.8125$ 7. $\sum_{n=1}^{\infty} \binom{7}{6}$ Geometric |r| > 1 : Diverges 9. $\sum_{n=1}^{\infty} \frac{n}{n+1} \lim_{n \to \infty} \frac{h}{n+1} = 1$ (nth Term test) Diverges $\neq 0$ $11. \sum_{n=1}^{\infty} \frac{h^2}{n^2 + (1 - n^{-2})n^2 + 1} = 1 \neq 0 \quad \text{Diverges}$ $13. \underbrace{\leq 2^{n+1}}_{n=1} = \underbrace{\leq 2^{n+1}}_{n=1} \underbrace{\lim_{n \to \infty} 2^{n+1}}_{n \to \infty} = \frac{1}{2} \neq 0 \quad \text{Diverges}$ 15. Z (5%) Geometric 02/r/2/ Converges 16. $\tilde{\geq}_2 \left(-\frac{1}{2}\right)^n$ Converges or |r| < l19. Zn(n+1) (telescoping) I = A(n+1) + Bn A = 1 A = 1 B = -1 Converges + 0 / $a_{0} = 5$ $S_{0} = \frac{5}{1-2b} = \frac{5}{1/3} = \frac{15}{15}$ 29. $8 + 6 + \frac{9}{2} + \frac{27}{8} + \frac{32}{1 - 3/4} = \frac{32}{(1/4)} = 32$ $q_1 = 8 = r = \frac{3}{4}$ 42. $\sum_{1000}^{\infty} \frac{3^{h}}{1000} = \sum_{1000}^{\infty} \frac{1}{1000} = 3^{h}$ Diverging since r=3

42. 2 1000 ~ pivelging pince 1-2 48. $\sum_{n=0}^{\infty} \frac{3}{5^n} = \sum_{n=0}^{\infty} 3 \cdot (\frac{1}{5})^n$ converges $r = \frac{1}{5} \frac{3}{1 - \frac{3}{5}} = \frac{3}{(\frac{1}{5})} = \frac{15}{4}$ 52. $\overline{\Sigma}e^{-n} = \overline{\Sigma}\left(\frac{1}{e}\right)^n$ converges $0 \le \frac{1}{e} \le 1$ 75, h=16 feet re bounds 0,31h $\frac{20}{16} = \frac{16}{16} + 2 \left(\frac{16(81)^{n}}{100} \right) = 7a, =$ $\frac{2(16(81))}{2(16(81))^{2}} = \frac{16}{10} + \frac{25,92}{100} \approx 16 + 136.421 \approx 152.421 \text{ feet}$ liman=0 then Ean = converges False n=200 n=1 91. q_2 . $Z_{q_n} = L + hen Z_{q_n} = L + a_0$ True