Packet Page 601 \#3-15odd, 16, 19, 25, 29, 42, 48, 52, 75, 91, 92
3. $s_{1}=3 \quad s_{2}=3-9 / 2=-1.5 \quad s_{3}=3-9 / 2+27 / 4=5.25 \quad S_{4}=5.25-81 / 8=-4.825 \quad s_{5}=10.3125$
5. $\sum_{n=1}^{\infty} \frac{3}{2^{n-1}} \quad S_{1}=3 \quad S_{2}=4.5 \quad s_{3}=5.25 \quad S_{4}=5.625 \quad S_{5}=5.8125$
7. $\sum_{n=0}^{\infty}\left(\frac{7}{6}\right)^{n}$ Geometric $|r|>1 \therefore$ Diverges
9. $\sum_{n=1}^{\infty} \frac{n}{n+1} \quad \lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \quad\left(n^{t n}\right.$ Term test $)$ Divirges $\neq 0$
11. $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1} \quad \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1 \neq 0$ biverges
13. $\sum_{n=1}^{\infty} \frac{2^{n}+1}{2^{n+1}}=\sum_{n=1}^{\infty} \frac{2^{n}+1}{2^{n} \cdot 2} \quad \lim _{n \rightarrow \infty} \frac{2^{n}+1}{2 \cdot 2^{n}}=\frac{1}{2} \neq 0 \quad$ Diverjes
15. $\sum_{n=0}^{\infty}(5 / 6)^{n}$ Geometric $u \operatorname{lr} 1<1$ Converges
16. $\sum_{n=1}^{\infty} 2\left(-\frac{1}{2}\right)^{n}$ Converses $0<1 r \mid c 1$
19. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ (tele scoping)

$$
\begin{array}{ll}
1=A(n+1)+B n \\
A=1 & B=-1
\end{array} \sum_{n=1}^{\infty} \frac{1}{n}+\frac{-1}{n+1} \quad \lim _{n \rightarrow \infty} 1+\frac{-1}{n+1}=1+0
$$

converges to
25. $\sum_{n=0}^{\infty} 5\left(\frac{2}{3}\right)^{n} \quad a_{0}=5 \quad s_{\infty}=\frac{5}{1-2 / 3}=\frac{5}{1 / 3}=15$
29. $8+6+9 / 2+\frac{27}{8}+\ldots \quad \frac{8}{1-3 / 4}=\frac{8}{(1 / 4)}=32$
$a_{1}=8 \quad r=3 / 4$
42. $\sum_{n=0}^{\infty} \frac{3^{n}}{1000} \quad \sum_{n=0}^{\infty} \frac{1}{1000} \cdot 3^{n}$ Diverging since $r=3$
42. $\sum_{n=0} \frac{1000}{} \quad \sum_{n=0} 1000^{\circ} 0 \quad$ Diraging vilive ...
48. $\sum_{n=0}^{\infty} \frac{3}{5^{n}}=\sum_{n=0}^{\infty} 3 \cdot\left(\frac{1}{5}\right)^{n} \quad$ convajes $r=1 / 5 \quad \frac{3}{1-1 / 5}=\frac{3}{(4 / 5)}=15 / 4$
52. $\sum_{n=1}^{\infty} e^{-n}=\sum_{n=1}^{\infty}\left(\frac{1}{e}\right)^{n}$ convajes $0<\left|\frac{1}{e}\right|<1$
75. $h=16$ teet re bounds 0.81 h

$$
\begin{aligned}
& 16: \sqrt{\vdots}{ }_{2(16,3))} \sum_{2(16(81))^{2}}^{\infty} 16+2 \underbrace{\left(16(81)^{n}\right)}_{16+\frac{25.92}{1-.81}} \approx 16 \\
& 2(16(3) 3) 2116(8.8)^{2} \quad 16+\frac{25.92}{1-.81} \approx 16+136.421 \approx 152.421 \mathrm{feet}
\end{aligned}
$$

91. $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum_{n=1}^{\infty} a_{n}=$ converges False
92. $\sum_{n=1}^{\infty} a_{n}=L$ then $\sum_{n=0}^{\infty} a_{n}=L+a_{0}$ True
