Precalculus Honors Recap on 1.1-1.3 Name_____

#1-11 cover 1.1 and 1.2 #12-16 cover 1.3

- 1) Be able to use your calculator to create scatterplots, lists and recognize grapher failure.
- 2) Be able to solve application problems with volume, distance and free fall.
- 3) Be able to solve radical equations.
- 4) Be able to determine if a relation is a function from the equation.
- 5) Be able to find the domain of a function from the equation.
- 6) Be able to determine the range of a function from a graph.
- 7) Be able to determine
- 8) Be able to find max/min and increasing and decreasing intervals.
- 9) Be able to determine if a function is even or odd.
- 10) Be able to find the horizontal, vertical and end behavior asymptotes.
- 11) Be able to evaluate limits.
- 12) Be able to graph the 12 basic functions.
- 13) Be able to graph with transformations.
- 14) Be able to graph real world situations.
- 15) Be able to graph functions with more than one horizontal asymptote.
- 16) Be able to graph a piecewise determined function.

1.

(b) The regression curve is $y = 25.34x^2 - 122.22x + 1117.38$.

[0, 12] by [640, 3260]

(c) $25.34(16)^2 - 122.22(16) + 1117.38 \approx 5650$ (thousands of barrels)

2.

(a)
$$A = 2xy = 2x(36 - x^2) = 72x - 2x^3$$

(b) $36 - x^2 \ge 0$, $(6 - x)(6 + x) \ge 0$, $-6 \le x \le 6$. However, x < 0 are invalid values, so the domain is [0, 6].

(d) The maximum area occurs when $x \approx 3.46$, or an area of approximately 166.28 square units.

3. Solve algebraically $x = -1 + 2\sqrt{x+4}$ $(\chi+)^{2} = (2\sqrt{x+4})^{2} (\chi^{2} - 2\chi - 15 = 6)$ $\chi^{2} + 2\chi + 1 = 4(\chi+4) (\chi-5)(\chi+3) = 0$ $\chi^{2} + 2\chi + 1 = 4\chi + 16 \chi = 5$

4. Function? $y - x = x^2 - |y|$

5. Sketch a complete graph of the function and then determine whether the function is continuous or discontinuous

a.
$$f(x) = \begin{cases} x^2 + 5 & x \ge 0 \\ -|x+3| & x < 0 \end{cases}$$

b. Continuous or discontinuous?
Jump discort.
c. $\lim_{x \to 0^-} f(x) = \underline{-3}$ $\lim_{x \to 0^+} f(x) = \underline{-5}$

d.
$$f(0) = ____5$$

6. Given
$$f(x) = \frac{6x^2 - x - 1}{2x^2 + 9x - 5}$$
 States

$$f(x) = \frac{(3x + 1)(2x - 1)}{(2x - 1)(x + 5)}$$

x = 1/2 x = -5

Domain (without a calculator): $(-\infty, -5)\cup(-5, \frac{1}{2})\cup(\frac{1}{2}, \infty)$

State all types of discontinuities: $v A'_{2} = -5$ RD $(\frac{1}{2}, \frac{5}{1})$

End behavior:
$$\lim_{x \to \infty} g(x) = \underline{3}$$

Other limits: $\lim_{x \to -5^-} g(x) =$

$$\lim_{x \to \frac{1}{2}} g(x) = \frac{5}{ll}$$

Range (using a calculator): $(-\infty_1 3) \cup (3, \infty)$

Is there a Horizontal Asymptote? q = 3

$$\lim_{x \to -\infty} g(x) = \underline{3}$$

 $\lim_{x\to-5^+}g(x) = - \mathcal{O}$

$$\lim_{x \to \frac{1}{2}^+} g(x) = \underline{5/l}$$

7. Look at the graph from #6 on your graphing calculator and determine the following:

8. On which intervals is the function $g(x) = x^4 - 1.1x^2 - 65.4x + 229.5$ increasing? Give your answer using 3 decimal places. (Calculator OK)

$$[-2.610, \infty)$$

9. Perform the tests to determine whether the function $h(x) = x^4 y^2 - 3xy$ is odd, even or neither.

$$h(-x) = (-x)^{4} y^{2} - 3(-x) y$$

= $x^{4} y^{2} + 3xy$ ne, then

10. Graph a function that meets all of the following:

a.
$$\lim_{x \to \infty} f(x) = 3$$
$$\lim_{x \to \infty} f(x) = 3$$
$$f(0) = -2$$
$$(-\infty, 2)$$
$$(0)$$
increases on $[2, \infty)$

increases on its entire domain

11-12 Given:
$$f(x) = x$$
, $f(x) = x^2$, $f(x) = x^3$, $f(x) = \frac{1}{x}$, $f(x) = \sqrt{x}$, $f(x) = \frac{1}{1 + e^{-x}}$
 $f(x) = e^x$, $f(x) = \ln x$, $f(x) = \sin x$, $f(x) = \cos x$, $f(x) = |x|$, $f(x) = \operatorname{int}(x)$

- 11. Which six functions that are increasing on their entire domains? $-(x) = x \quad f(x) = x^3 \quad f(x) = \sqrt{x} \quad f(x) = e^x \quad f(x) = \ln y \quad f(x) = \frac{1}{1+e^{-x}}$
- 12. Which three functions have end behavior $\lim_{x \to 0} f(x) = 0$.

$$f(x) = \frac{1}{x} \quad f(x) = \frac{1}{1 + e^{-x}} \qquad f(x) = e^{x}$$

13. Use your graphing calculator to determine all local and absolute extrema and where they occur. Also state if the function is bounded above, bounded below, bounded, or unbounded.

a.
$$y = x^3 - 3x$$

local max of 2
 $a = -1$
local min of -2
 $a = x = 1$
no Abs. Extrema
Un bounded
b. $y = \frac{4x^2}{x^2 + 4}$
b. $y = \frac{4x^2}{x^2 + 4}$
local $x^2 + 4$
 $a = \frac{4x^2}{x^2 + 4}$
local $x = -7$
 $a = \frac{4x^2}{x^2 + 4}$
local $Abs min of -7$
 $a = \frac{4x^2}{x^2 + 4}$
local $Abs min of -7$
 $a = \frac{4x^2}{x^2 + 4}$
local $Abs min of -7$
 $a = \frac{6}{x}$
Bound Above $y = 3$
Below $y = 0$
 $a = \frac{6}{x^2 + 4}$
Bound Above $y = 3$
 $a = \frac{7}{x^2 + 4}$
 $a = \frac{7}{x^2 + 4}$